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Preface

You are pooped and demoralized. Why
wouldn’t you be? Of course it is exhausting,
having to reason all the time in a universe
which wasn’t meant to be reasonable.

Kurt Vonnegut1

A
stronomy and cosmology are arguably the oldest sciences, and perhaps the
second oldest professions in history. After many millenia floating in the
darkness of mysticism and speculation, cosmology has finally become an em-
pirical and predictive discipline. The effort of thousands of scientists, from
astronomers to theoretical physicists, has carved a Standard Cosmological
Model (SCM) that is able to explain a large and increasing set of phenom-

ena. The price to pay is the inclusion of three mysterious elements with no conventional
explanation: inflation to account for the large scale homogeneity and initial perturbations of
the universe, dark matter to enhance the formation of cosmic structure, and a Cosmological
Constant to propel the latter stage of accelerated expansion.

The Standard Cosmological Model is undoubtedly beautiful. The elegance of the Gen-
eral Relativistic geometric description is supplemented by the symmetry of the large scale
metric. Despite its simplicity, this scheme seems able to accurately describe the coarse grained
evolution of the universe on the largest scales throughout cosmic history. Yet, many ques-
tions regarding the nature of the new elements remain unanswered: What is the mechanism
behind cosmic inflation and the properties of the dark matter particle(s)? Is cosmic acceler-
ation driven by Einstein’s Cosmological Constant? If so, why is its value so small compared
to particle physics energy scales but still large enough to be observable? If not, how is its
value suppressed and what is the true mechanism for the acceleration?

The Standard Cosmological Model has been extremely successful in explaining a broad
set of observables with just a handful of parameters. The evidence supporting cosmic ac-
celeration has grown since the first decisive data from type Ia Supernovae (SNe) pointing
towards the existence, and a number of independent observables agree now on the details
of this paradigm. Measurements of the Cosmic Microwave Background (CMB) temperature
anisotropies support the spatial flatness of the universe. When combined with the determi-

1Breakfast of Champions (1973)
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nation of the local expansion rate, it follows that a smooth component with negative pressure
must dominate the cosmic energy budget. Observations of the Large Scale Structure distri-
bution confirm this picture. The formation rate of cosmic structures through gravitational
collapse bounds the amount of clustering matter to be well below what is necessary for the
universe to be spatially flat. The same physics that produces anisotropies in the CMB im-
prints a characteristic Baryon Acoustic (BAO) scale in the LSS distribution, which can be
measured by galaxy surveys. It provides a standard ruler that tracks the cosmic expansion,
further supporting the paradigm of cosmic acceleration.

Cosmology has made the promise of new physics. It not only supports its existence,
but also provides means to validate or refute the different scenarios. As in a Gold Rush,
myriads of alternatives to the Cosmological Constant have been proposed and studied in
recent years. These models necessarily modify some sector of the Standard Cosmological
model. It is possible to mimic the observed acceleration without the introduction of new
exotic elements, by postulating a metric which is inhomogeneous on large scales. This can
be done only at the price of living in a special location within the cosmos: the center of a
very large, spherical and underdense region. Another possibility is to extend the Einstein-
Hilbert action for General Relativity (GR), allowing the presence of scalar fields or even
more dramatic modifications of the gravitational theory. Scalar fields can be uncoupled from
other components, in which case they contribute to the universe dynamics only through their
energy and pressure density. They may alternatively interact directly with all or some of the
matter species, becoming potentially detectable through experiments in our Solar System
and the study of the formation of Large Scale Structure.

The present Thesis explores models belonging to each of the categories previously de-
scribed. A spherically symmetric but inhomogeneous cosmology is found to be discrepant
with observations. The matter inhomogeneity necessary to explain the luminosity-redshift
relation of type Ia SNe is incompatible with the BAO scale imprinted on the galaxy distribu-
tion, because the less dense region near our galaxy expand faster than the more dense ones
far away, producing a space dependent stretch of the cosmic ruler. Several departures from
General Relativity are also explored. Models based on ideas about the thermodynamical
properties of space-time are studied by the modifications of the background cosmological
equations that they produce. Theories beyond GR with a full and self consistent description
are also considered. They are based on the addition of a scalar degree of freedom, which is in-
troduced by means of a disformal tranformation the metric in some sector of the Lagrangian.
The disformal transformation generalizes the well known local rescaling of the metric (con-
fomal transformation), and allows one to establish connections between different theories,
including the definition of new physical frames in which to study their consequences. This
prescription also allows the construction of models for the cosmic acceleration in which the
field is may couple to matter directly or not. In the coupled case, the scalar field mediates
a new interaction that affects the growth of structure. However, a disformally coupled field
becomes insensitive to the matter distribution in high density, non-relativistic environments,
and the additional force is hidden from gravitational experiments in this regime.

Cosmology is not a beauty contest. A model should not be favored because of being
simpler, more elegant, or widely accepted. Its validity should depend on the comparison
between its predictions and the available data. In order to grant a democratic and fair trial,
this comparison should be performed in the least biased possible way. However, cosmic justice
is not always blind. Model dependent assumptions are sometimes made in the analysis of raw
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data, and certain simplifications which might be compatible with the standard assumptions
might not be fulfilled in alternative scenarios. The study of the different alternatives helps
to identify these flaws and make the process of comparison between theory and observations
as model independent as possible.

Honest empirical science can not prove a model right, but rather disprove its alternatives.
Studying the predictions of different models and comparing them with observations provides a
way to validate the foundations of the Standard Cosmological Model and quantify departures
from the constituent assumptions. This model based approach is complementary to model
independent methods: while the latter allow for a general study of the data, which might
reveal new phenomenological features, the former allows one to find and study concrete
physical mechanisms that produce these phenomena. The study self-consistently formulated
models further allows the exploration of a given physical set-up in distinct regimes, within
computational limitations.

This considerations will become increasingly important as the cosmological wealth and
quality of data increase. It is the observational effort what has awarded physical cosmology
its present status, and this effort will continue during the following decades. Keeping in
mind alternatives to the Cosmological Constant, or any of the standard assumptions, is a
good way to be prepared for new discoveries. Hopefully, forthcoming data might allow us to
test the foundations of the Standard Cosmological Model with upgraded independence from
each other. Finally, the study of alternative theories often provides a better understanding
of the standard paradigm, as different shades might be appreciated in the taste of everyday
food after a trip to an exotic land.

Outline

Chapters 1 and 2 introduce the fundamental concepts involved in the study of models for
cosmic acceleration and their comparison to observations. Section 1.1 presents the hypotheses
behind the Standard Cosmological Model. Arguments to pursue the study of alternatives
are given in Section 1.2. Section 1.3 gives an overview of the non-standard scenarios. The
observational probes of cosmology are classified based on the type of information that they
provide in Section 2.1. The remaining of Chapter 2 presents the most relevant ones for the
subsequent analysis.

Several cosmological models that violate the standard assumptions are studied and
compared with observations in the following Chapters. The possibility of large scale inho-
mogeneity and the violation of the Copernican Principle is considered in Chapter 3. After
introducing the LTB inhomogeneous models, the effects of the inhomogeneities on the BAO
scale are detailed in Section 3.2, and used in Section 3.3 to rule out profiles with space in-
dependent Big-Bang. Chapter 4 studies phenomenological modifications of the Friedmann
equations (inspired by the entropic gravity proposal) and their observational consequences.
Chapter 5 explores theories in which a disformal transformation is performed on a canoni-
cal scalar field Lagrangian, including connections between Dark Energy Lagrangians and a
thorough study of the cosmological implications of the disformal quintessence model. The
use of disformal transformations is extended in Chapter 6, where it is allowed to enter the
gravitation and matter sectors. Sections 6.1 and 6.2 contain the derivation of the equations
for the theory, and explore the connections between the disformally coupled models and other
scalar-tensor theories. Their cosmology is explored for a simple, Disformally Coupled Dark
Matter model, both in the homogeneous approximation and including cosmological pertur-
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bations, in Sections 6.3 and 6.4. The viability of extending the coupling to visible matter via
a disformal screening mechanism is explored in Section 6.5.

The main results and a global discussion are presented in Chapter 7. Several techni-
cal results and the description of auxiliary tools have been included in the Appendices A
(statistical analysis and Markov Chain Monte Carlo algorithm), B (Boltzmann code to solve
cosmological equations), C (equations for k-essence scalar fields) and D (disformal relations).
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Resumen y Conclusiones

Cuando una persona tiene la suerte de vivir
dentro de una historia, de vivir un mundo
imaginario, el dolor de este mundo
desaparece. Mientras la historia siga, la
realidad deja de existir.

Paul Auster2

L
a cosmoloǵıa moderna ha alcanzado un gran desarrollo como cienćıa emṕıri-
ca y predictiva en las últimas décadas. El incremento en cantidad y cal-
idad de los datos observacionales, unido a una sólida descripción teórica,
han permitido el establecimiento de un Modelo Cosmológico Estándar ca-
paz de explicar una gran variedad de fenómenos. Numerosas observaciones
cosmológicas apuntan a que el universo está experimentando una época de

expansión acelerada. Las supernovas lejanas de tipo Ia son menos luminosas de lo que cabŕıa
esperar en un universo que contiene únicamente materia. El estudio de las anisotroṕıas del
fondo cósmico de microondas combinado con la medida de la tasa de expansión local, implica
que el universo tiene secciones espaciales planas y está dominado por una densidad de enerǵıa
con presión negativa. Los datos sobre formación de estructuras a gran escala concuerdan con
este escenario. La tasa acreción de materia hacia las regiones más densas indica que la can-
tidad total de materia está muy por debajo de la que se necesita para que el universo sea
espacialmente plano. La misma f́ısica responsable de las anisotroṕıas del fondo cósmico de
microondas imprime una escala caracteŕıstica en la función de correlación de materia, que
puede ser medida en catalogos de galáxias en distintas épocas. Esta longitud estándar evolu-
ciona con la expansión del universo y permite medir la tasa de aceleración, que concuerda
con los datos de supernovas.

La interpretación de estos datos se han realizado dentro de un paradigma estándard,
en el que la gravedad está descrita por la teoŕıa de la Relatividad General, el universo es
espacialmente homogeneo e isótropo a grandes escalas y la aceleración es causada por una
Constante Cosmológica. Las expectaciones teóricas sobre el valor de dicha constante son su-
periores al valor observado en muchos ordenes de magnitud. Además de la aceleración, el
modelo estándar necesita de otros elementos no convencionales como la materia oscura y

2The Brooklyn Follies (2005)
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Resumen y Conclusiones

la inflación cosmológica para ser fenomenológicamente satisfactorio. El escepticismo sobre el
valor de la constante cosmológica, unido a las promesas de nueva f́ısica hechas por la cos-
moloǵıa moderna, han favorecido la propuesta de una gran cantidad de modelos alternativos.
Éstos pueden clasificarse según las hipótesis que violan dentro del paradigma estándar, y sus
prediccions se pueden comparar con observaciones cosmológicas para determinar su viabil-
idad. Esta Tesis aplica este programa en diferentes casos, para validar los fundamentos del
Modelo Cosmológico Estándar y acotar posibles desviaciones de las suposiciones fundamen-
tales. Los resultados incluyen el estudio de modelos sin Constante Cosmológica basados en
desviaciones de la homogeneidad, parametrizaciones de las ecuaciones cosmológicas y exten-
siones de la teoŕıa de la Relatividad General.

Modelos inhomogeneos no Copernicanos: Desde el punto de vista de nueva f́ısica, la
posibilidad más sencilla consiste en reducir el grado de simetŕıa de la métrica. Postulando un
espacio-tiempo esféricamente simétrico alrededor de nuestra galax́ıa, es posible reinterpretar
la aceleración como un espejismo, causado por las diferentes tasas de deceleración, que de-
penden de la distribución de materia en función de la distancia. En este tipo de modelos es
necesario que nuestra galaxia esté situada en un lugar especial del universo: cerca del centro
de una región con menor densidad de materia. Cuando la edad del universo y la proporción
entre materia bariónica y oscura son independientes de la coordenada radial, estos modelos
representan el crecimiento por colapso gravitacional de una perturbacion con una amplitud
inicial pequeña. Estos casos particulares están descritos por el perfil de la distribución de
materia y la normalización del ritmo de expansión, y se conocen modelos Lemâıtre-Tolman-
Bondi (LTB) adiabáticos.

En el caṕıtulo 3 se estudian modelos LTB adiabáticos con un perfil de tipo GBH, los
cuales no son compatibles simultaneamente con observaciones geométricas de supernovas y la
escala de oscilaciones acusticas (BAO). Al igual que en el modelo estándar, la escala de BAO
evoluciona localmente con el factor de escala, lo que produce una diferencia entre su valor
en la dirección radial y angular, aśı como una dependencia con el radio. Este último efecto
hace que la misma inhomogeneidad que permite emular la aceleración, estire de manera
diferente la escala de BAO en diferentes puntos, haciendola más grande cerca de nuestra
galaxia (donde hay menos materia y el universo se expande más) que a distancias mayores.
Los nuevos datos a alto deplazamiento al rojo z & 0,5 permiten explorar ambos reǵımenes y
hacen incompatibles ambos observables. Este efecto ocurre en todos los modelos adiabáticos
independientemente del perfil de materia. La comparación con observables geométricos provee
un nuevo argumento a favor de la aceleración del universo y en contra de este tipo de modelos,
complementario a las medidas del ritmo de expansion en distintas épocas y el efecto Sunyaev
Zeldovich cinético.

La discrepancia entre los modelos LTB adiabáticos sin Constante Cosmologica y los
observables geométricos puede emplearse para acotar modelos más generales. El estudio de
modelos tipo LTB con Constante Cosmológica permite determinar el grado de inhomogenei-
dad compatible con las observaciones en casos más realistas. También es posible reducir las
restricciones del modelo, considerando modelos no adiabáticos (con tiempo desde el Big-
Bang o fracción de materiá oscura/radiación sobre bariones dependiente de la posición),
desviaciones desde la posición central o incluso métricas más generales. Este programa se
beneficiaŕıa en gran medida de la inclusión de observables dinámicos, tales como el efecto
Sachs Wolfe integrado o las distorsiones en espacio de desplazamientos al rojo.
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Modificaciones fenomenológicas: El estudio de modelos basados en parametrizaciones
es útil para simplificar el analisis de ideas teóricas que son dificiles de tratar o no poseen
una formulación bien definida. Esta posibilidad se ha explorado en el Caṕıtulo 4 para el
caso de modificaciones de las ecuaciones de Friedmann basadas en consideraciones sobre las
propiedades termodinámicas del espacio tiempo. Esta aproximación tiene la desventaja de
que la obtención de las ecuaciones depende de una serie de hipótesis que son válidas en el
marco de Relatividad General, pero que aun no se han comprobado en estos escenarios. A
pesar de carecer de una descripción completa y autoconsistente, este t́ıpo de estudio permite
explorar nuevos mecanismos f́ısicos de manera sencilla, y los resultados son validos en general,
para cualquier mecanismo subyacente que introduzca las mismas modificaciones a nivel de
las ecuaciones. Por otro lado, la alternativa de emplear una aproximación autoconsistente
basada en un modelo concreto tiene la ventaja de que permite explorar los mecańısmos f́ısicos
subyacentes en una variedad de situaciones, limitadas por consideraciones computacionales.

Modelos más allá de Relatividad General basados en métricas disformes: El
hecho de que la aceleración del universo suceda en escalas en las que no existe una validación
independiente de la teoŕıa de la Relatividad General sugiere una revisión en profundidad de
sus fundamentos. Una posibilidad de extender la teoŕıa de Einstein es mediante la aplicación
de una transformación disforme en algún sector de la acción, dada por los gradientes de
un campo escalar. Esta prescripción se empleá sobre un escalar canónico en el Caṕıtulo 5 y
sobre el Lagrangiano de materia en el caṕıtulo 6. Las relaciones disformes generalizan las bien
conocidas transformaciones locales de escala (o transformaciones conformes) permitiendo una
distorsión de la estructura causal en la metŕıca transformada con respecto a la inicial. Este
tipo de relaciones son las más generales posibles entre la métrica gravitatoria y la de materia
compatibles con convariancia general, y aparecen la descripcion efectiva de ciertas teoŕıas
con dimensiones adicionales extensas.

Las transformaciones disformes permiten construir modelos de enerǵıa oscura en los
que el campo escalar pierde su enerǵıa cinetica, contribuyendo a la expansión del univer-
so únicamente mediante su potencial, que actua como una Constante Cosmológica efectiva.
Esto sucede por la tendencia del campo a evitar dinámicamente una singularidad en la met-
rica disforme, y funciona tanto en el caso de la auto-interacción del propio campo (modelo
de quintaesencia disforme) como en el caso de un acoplo con la materia oscura (modelo de
materia oscura disformemente acoplada), que fueron estudiados en el caso en el que no hay
interacción conforme. El campo de quintaesencia disforme produce únicamente efectos indi-
rectos en la formación de estructura, y su comportamiento se asemeja mucho a una Constante
Cosmologica para valores altos de las pendientes de los potenciales, siendo dificil distinguir
ambas posibilidades observacionalmente. Sin embargo, el modelo de materia disformemente
acoplada experimenta una fuerza adicional mediada por el campo escalar. Aunque es capaz
de reproducir la expansión cosmológica en el ĺımite homogeneo, esta fuerza produce efectos
importantes en la formación de estructura a gran escala, tornandola incompatible con las
observaciones. Afortunadamente, existe mucha libertad en la teoŕıa para producir modelos
viables, en los que las modificaciones sean menos dramaticas pero permitan distinguir las
diferentes alternativas.

Las transformaciones disformes también permiten relacionar entre si teoŕıas aparente-
mente disconexas. En ciertos ĺımites, el Lagrangiano de quintaesencia disforme más general se
reduce a una serie de modelos de campos escalares no acoplados. Cuando la métrica disforme
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entra en el Lagrangiano de materia y el sector gravitatorio corresponde a Relatividad Gen-
eral, se dice que la teoria resultante está en la descripción de Einstein. Es posible invertir la
transformación conforme para eliminar el acoplo directo entre el campo escalar y la materia,
dando lugar a la descripción de Jordan. En ella, el campo escalar se acopla cinéticamente
al escalar de curvatura, y aparecen una serie de términos en segundas derivadas del campo,
que sin embargo no introducen inestabilidades en la teoŕıa. Este tipo de Lagrangianos con
auto-interacciones no lineales en derivadas son capaces de producir el “effecto de Vainshtein”,
que alisa los gradientes del campo escalar cerca de objetos masivos, ocultando la interacción
adicional.

Las teoŕıas disformemente acopladas en la descripción de Einstein también son capaces
de evitar los efectos de la fuerza adicional en entrornos no-relativistas con una densidad de
enerǵıa elevada, tales como el Sistema Solar. En estos casos, existe un ĺımite bien definido en
el que la densidad de materia tiende a infinito (al contrario que en el caso de un acoplo con-
forme), y en el que la evolución del campo escalar se vuelve independiente de la distribución
de materia y los gradientes espaciales del campo. Este “mecanismo de camuflaje disforme”,
que suprime la fuerza adicional, es debido a la mezcla de términos cinéticos entre campo
escalar y los grados de libertad acoplados. Su acción hace muy dif́ıcil detectar los efectos
inducidos por el acoplo disforme mediante medidas de fenómenos gravitatorios, mientras que
permite que éste tenga consecuencias considerables a nivel cosmológico.

La equivalencia entre teoŕıas disformemente acopladas y teoŕıas con interacciones no lin-
eales en derivadas sugiere que el mecanismo de camuflaje disforme y el efecto de Vainshtein
son en realidad manifestaciones del mismo fenómeno, pero vistas a la luz de las descripciones
de Einstein y Jordan, respectivamente. Esta equivalencia también abre una nueva ventana
para el analisis de este tipo de teórias, ya que las ecuaciones en la descripción de Einstein se
simplifican considerablemente con respecto a la descripción de Jordan. Asimismo, hay otros
aspectos de las teoŕıas disformemente acopladas que merecen ser considerados en detalle. Es-
tos incluyen el estudio de la estabilidad de la teoŕıa, modelos más generales (e.g. añadiendo un
acoplo conforme) y otras situaciones en las que puedan producirse signaturas caracteŕısticas.

Discusión: El estudio de diferentes modelos es beneficioso para la salud de la ciencia emṕıri-
ca, ya que ésta no puede demostrar la veracidad de una hipótesis, sino únicamente refutar
sus alternativas. La comparación de modelos que desaf́ıan las suposiciones habituales con las
observaciones permite validar los fundamentos del Modelo Cosmológico Estándar y explorar
los ĺımites de su validez. Este programa también permite la identificación de las hipótesis que
se asumen implicitamente en las distintas etapas del analisis, y permite encontrar ejemplos en
los que éstas no se cumplen, facilitando el diseño de estrategias que favorezcan una compara-
ción entre teoŕıas y datos más independiente y menos sesgada. Esto no solo es necesario para
obtener resultados fiables, sino que es necesario para comprobar las distintas hipótesis del
Modelo Cosmológico Estándar de manera lo más independiente pośıble. Por último, el estudio
de teoŕıas alternativas a menudo aporta ejemplos que permiten entender mejor el paradigma
convencional, enriqueciendo el conocimiento que se tiene sobre él y las tecnicas disponibles
para su analisis. Estas consideraciones serán importantes en las próximas décadas, cuando el
incremento en la cantidad y calidad de las observaciones cosmológicas valide de manera aún
más sólida los fundamentos del Modelo Cosmológico Estándar o nos sorprenda con nuevos
datos que indiquen la necesidad de revisarlo.
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Notation and Acronyms

The present conventions have been adopted throughout the following Chapters, unless oth-
erwise specified. The metric signature is (−,+,+,+), and the Riemann curvature is defined
as in Eq. (1.1). Coordinates are labeled by greek indices xµ where µ = 0 refers to the
time coordinate and latin indices to spatial coordinates only. Sum over contracted indices is
implicitly assumed and units in which the speed of light c is set to unity are used.

Partial derivatives with respect to a variable are denoted with commas, L,φ ≡ ∂L/∂φ.
Partial derivatives w.r.t. coordinates are indicated either by commas or by the partial deriva-
tive sign φ,µ ≡ ∂µφ ≡ ∂φ/∂xµ, using either the coordinate or its index. A semi-colon will
indicate a covariant derivative φ;µν = ∇ν∇µφ. Derivatives with respect to time coordinates
are indicated with a dot Ȧ(r, t) ≡ ∂A/∂t. t refers to cosmic time, τ to conformal time
and both satisfy dt = a(τ)dτ . In a function of one variable, a prime will denote a deriva-
tive A′(φ) ≡ A,φ, while for functions of space-time, a prime will indicate a derivative with
respect to the radial coordinate A′(r, t) = ∂A/∂r. Fourier transforms are defined so that

∂if(t, ~x) = ikif̃(t,~k). δD, δ
(n)
D denote the Dirac delta function and its n-dimensional general-

ization. Barred quantities are constructed out of disformal metrics of the form given by Eqs.
(6.1, 5.3) (Appendix D contains a compilation of relations that apply to disformal metrics).

The acronyms used throughout the text are summarized in Table 2 below for conve-
nience:

Name Reference

BAO Baryon Acoustic Oscillation(s) 2.4.1
BBN Big Bang Nucleosynthesis 2.2
CC Cosmological Constant Λ 1.1.5

CDM Cold Dark Matter 1.1.4
CGBH Constrained GBH 3.1.1
Cl Angular power spectrum (2.7, 2.9)

CMB Cosmic Microwave Background 2.3
DA Angular Diameter Distance (2.1)
DC Disformal Coupling 6.2.2

DCDM Disformally Coupled Dark Matter 6.3.1
DE Dark Energy 1.3.2
DL Luminosity Distance (2.2)
DM Dark Matter 1.1.4
dof degree of freedom
EF Einstein frame 6.2, (1.25)
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Notation and Acronyms

Name Reference

EH Einsten-Hilbert (action) (1.2)
eos equation of state

FRW Friedmann-(Lemâıtre)-Robertson-Walker (1.5)
GBH Garcia-Bellido Haugbølle matter profile 3.1.1
GR General Relativity 1.1.1
Gpc Gigaparsec (3.09 · 1025m)
H0 Hubble rate today [km/Mpc/s]
h Normalized Hubble rate today [100 km/Mpc/s]

ISW Integrated Sachs-Wolfe effect 2.3
JF Jordan frame 6.2, (1.23)
Λ Cosmological Constant 1.1.5
lhs left hand side
LSS Large Scale Structure 2.4
LTB Lemâıtre-Tolman-Bondi 1.3.1

MCMC Markov Chain Monte Carlo A
MG Modified Gravity 1.3.3
Mpc Megaparsec (3.09 · 1022m)

OCGBH Open Constrained GBH 3.1.1
P (k) Power spectrum (2.17)
rhs right hand side
SM Standard Model (of particle physics)

or Standard Matter 1.1.4
SCM Standard Cosmological Model 1
SNe Type Ia Supernovae 2.5

WMAP Wilkinson Microwave Anisotropy Probe
wx Equation of state of the x component
wrt with respect to
z redshift

Ωx cosmic fraction of the x- component today (1.8)

Table 2: Acronyms used in the text.
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Chapter 1

The Standard Cosmological Model

One should always look for a possible
alternative, and provide against it. It is the
first rule of criminal investigation.

Arthur Conan Doyle1

R
ecent years have witnessed enormous advance in the quantitative under-
standing of cosmology and the establishment of a Standard Cosmological
Model. In addition to known forms of matter, Einstein’s General Relativ-
ity and an ansatz for the space-time metric (spatially homogeneous and
isotropic), two mysterious elements need to be added in order to account
for the observations. These give the name to the standard, ΛCDM model:

Cold Dark Matter (CDM) to explain the formation and dynamics of cosmic structures and
a Cosmological Constant (Λ) to account for the dimming of distant supernovae [11, 12].

The steadily increasing precision and wealth of data and the surprising findings call for
a revision of the hypothesis made in the construction of the Standard Cosmological Model.
Dropping the large scale homogeneity assumption allows one to reinterpret the observed
acceleration as a mirage, allowing in principle for a universe with zero Cosmological Constant
[8]. Other alternatives have been proposed in which the Cosmological Constant is substituted
by a more general form of dark energy (DE) that fuels the acceleration [9]. Finally, the last
major path to address the dynamics of the cosmic acceleration is by postulating modifications
of General Relativity acting only on the largest cosmological scales [7].

Comparing these alternative models against cosmological observations does not only
provide potential hints to test new physics: it is itself a way to validate the assumptions on
which the standard paradigm is formulated. These assumptions will be presented in Section
1.1. A number of reasons to consider alternatives will be discussed in 1.2, and an overview of
the possible modifications that deal with the problem of cosmic acceleration in Section 1.3.

1The Return of Sherlock Holmes (1905)
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Chapter 1: The Standard Cosmological Model

1.1 Ingredients and Preparation

As a logical construction, the standard cosmological model requires six hypotheses

Standard Model = GR + FRW + Initial Conditions + SM + CDM+Λ

1. General Relativity: As gravity is always an attractive interaction, it dominates on
macroscopic distances and will be crucial for cosmological phenomena.

2. Friedman-Robertson-Walker metric: GR is a metric theory governed by nonlinear par-
tial differential equations. A simple ansatz for the metric is required, which in the
standard case is based on maximal spatial symmetry.

3. (Inflationary) Initial Conditions: The paradigm of cosmic inflation is able to provide
initial conditions for the perturbations around the background metric, explains the
observed value of the spatial curvature and further supports the choice of the metric.

4. Standard Matter: The known forms of matter and their cosmological effects have to be
accounted for, notoriously baryions (nucleons and electrons), photons and neutrinos.

5. Cold Dark Matter: Structure formation requires the presence of a form of matter does
not interact with light, usually assumed to be a new, weakly interacting particle species.

6. Cosmological Constant: The observed acceleration of the universe can be explained in
a simple way by the presence of an energy density that does not evolve in time.

Assumptions 1 and 4 are an extrapolation to the cosmological realm of good old earthly
physics, assumption 2 is a model simplification justified a posteriori and assumptions 3, 5
and 6 require the introduction of new physics, for which so far there is only cosmological and
(in the case of dark matter) astrophysical support.

1.1.1 General Relativity

The theory of General Relativity (GR) provides a very elegant framework in which the
gravitational interactions can be related to the geometry of the spacetime [13, 14]. The
fundamental degree of freedom is the space-time metric that determines the physical distances
ds2 = gµνdx

µdxν , which is treated as a fully dynamical variable. The theory relates the
dynamics of the metric to the matter through the curvature of the space-time, encoded in
the Riemann tensor

Rαβµν ≡ ∂[µΓαν]β + Γαγ[µΓγν]β (1.1)

where Γαµν ≡ gαλ(gα(µ,ν) − 1
2gµν,λ) is the torsion free (Γαµν = Γανµ) connection that gives a

metric compatible (∇αgµν = 0) covariant derivative ∇µvν = ∂µv
ν + Γνµαv

α. Besides the
metric formulation, to fully specify the dynamics an action for the metric has to be provided.
It turns out that the simplest, nontrivial, theory that can be constructed out of gµν works
superbly

S = SEH + Sm =

∫
d4x
√
−g R

16πG
+ Sm , (1.2)
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1.1. Ingredients and Preparation

where an unspecified matter sector has been included, g is the determinant of the metric,
and R ≡ gµνRααµν is the Ricci scalar. The above equation is known as the Einstein-Hilbert
action. The variation wrt the metric lead to Einstein equations

Gµν ≡ Rµν −
R

2
gµν = 8πGTµν . (1.3)

The lhs is known as the Einstein tensor. The source term, the energy momentum tensor is
defined out of the variation of the matter action, which is covariantly conserved by virtue of
the Bianchi identities

Tµν ≡ −2
δSm
δgµν

, ∇µTµν = 0 . (1.4)

1.1.2 Metric Ansatz: The Copernican Principle

Einstein equations (1.3) are a set of ten coupled, non-linear, partial differential equations
that are very difficult to solve unless some simplifying assumptions are made. Knowing that
static metrics are not a solution in the presence of matter, the simplest possible guess is to try
to model the “spatial average” and consider the evolution of the mean cosmic density. More
precisely, one can assume that the metric is formed by a foliation of maximally symmetric
spatial Sections, i.e. homogeneous and isotropic.2 This choice gives the Friedman-Lemâıtre-
Robertson-Walker metric

ds2
FRW

= −dt2 + a(t)2 dr2

1− kr2
+ a(t)2r2dΩ2 , (1.5)

where dΩ2 ≡ dθ2 + sin(θ)dφ2 is the solid angle element, and the scale factor a(t) encodes
dynamics of the spatial Sections, i.e. the expansion of the universe. The above metric has to
be regarded as a large scale, averaged limit of the true universe metric. Inhomogeneities and
anisotropies can be introduced as small perturbations within this picture, making the model
more predictive on the intermediate scales, at which the perturbations remain sufficiently
small.

The assumption of isotropy can be justified by the observations of the Cosmic Microwave
Background tempearture fluctuations. After removing the dipolar component (which is likely
due to the peculiar motion of our galaxy) the remaining fluctuations deviate at the order
of 10−5 from the mean and do not show evidence of a preferred direction.3 The case for
homogeneity is trickier, as it is possible to postulate a spherically symmetric universe, which
would seem isotropic if we are located very close to the center of symmetry, as it will be
exploited to construct inhomogeneous cosmological models without a Cosmological Constant.
Rather than waiting for observational validation, the assumption of homogeneity is invoked
a priori by means of the Copernican Principle, i.e. the statement that our location in the
universe is not be special (e.g. the center of a large, symmetric region).

There are two independent Einstein equations for the homogeneous metric 1.5, known
as the Friedmann equations: (

ȧ

a

)2

=
8πG

3
ρ− k

a2
, (1.6)

2It is further necessary to specify a global topology for the space-time manifold, for which it is assumed
that spatial sections are simply connected. Although the choice of a non-trivial topology does not influence
the local gravitational dynamics, it implies the existence of periodicity scales in the universe that violate
global isotropy. Such scales must be very large r & 24Gpc in order to fulfill by CMB observations [15].

3Some claims of prefered directions in the CMB have been made and disputed, e.g. references [16, 17].
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Chapter 1: The Standard Cosmological Model

ä

a
= −4πG

3
(ρ+ 3p) . (1.7)

Here ρ = T 00 and pgij = T ij are the energy and pressure density (1.10). It is conventional
to define the Hubble factor as H = ȧ/a and the fraction of a cosmic component today as

Ωi =
ρi
ρ0
, (1.8)

where ρ0 =
3H2

0
8πG is the critical density, defined in terms of the Hubble rate today H0.

1.1.3 Inflation: Symmetry and Initial Conditions

There is overwhelming evidence that the universe is not homogeneous on sufficiently small
scales. In order to give an accurate cosmological description, it is necessary to consider
deviations from the perfect FRW metric

ds2
PT = ds2

FRW + δgµνdx
µdxν . (1.9)

In the standard picture, these departures are very small at early times and become increas-
ingly significant as cosmic structures develop by the action of gravity. For a broad range of
scales and most of the cosmic evolution, it is sufficient to consider only linear corrections to
the Einstein equations, computed using the above perturbed metric to first order in δgµν .
The CMB shows that these fluctuations had a very small amplitude amplitude ∼ 10−5 during
the recombination epoch.

In order to explain the observed degree of isotropy in the cosmic microwave background
radiation, it is postulated that the universe underwent a period of accelerated expansion at
very early times, known as cosmic inflation. If the inflationary period lasts long enough,
it allows for opposite regions in the sky to be causally connected. The fact that they have
approximately the same temperature can be then seen as a natural consequence of local
physics. As inflation magnifies an initially tiny region into the whole observable universe,
it has the additional benefit of diluting away any preexisting feature, such as cosmic relics
or initial inhomogeneities. Hence, it provides further support for the choice of a maximally
symmetric metric to describe the universe expansion.

In addition to homogenize the universe, inflationary models source initial perturbations
in the metric by amplification of quantum fluctuations to macroscopic scales. Each infla-
tionary model provides a set of initial conditions for the perturbation equations that would
eventually give rise to the large scale structure of the cosmos through gravitational collapse.
Due to the empirical success of these predictions, inflation is often considered an ingredient
of the standard cosmological model, even in the absence of a preferred inflationary model.
The physical predictions for inflation are:

F Negligible Curvature: Despite it is not a component in itself, it can be quantised in
terms of Ωk = k

ρ0a2
. CMB observations combined with H0 and BAO yield a value

compatible with the inflationary prediction |Ωk| < 0.005 [18].

F Adiabatic, Gaussian and nearly scale invariant initial perturbations: Although the
details depend on the inflationary model, the CMB typically constraints departures
from this scheme [19].

6



1.1. Ingredients and Preparation

1.1.4 Standard and Dark Matter

Einstein Equations describe how the space time responds to the distribution of matter and
energy. The matter content in the universe can be modeled through an energy-momentum
tensor of the perfect fluid form

Tµν = (ρ+ p)uµuν + pgµν , (1.10)

where uµ is the four velocity and ρ, p the energy and pressure densities respectively. The
time component of the covariant energy momentum conservation (1.4) applied to a FRW
spacetime yields the continuity equation:

ρ̇+ 3H(ρ+ p) = 0 . (1.11)

For most of the cosmic evolution, the dominant fluids can be treated as barotropic, for which
p = wρ. This allows the integration of the conservation equation

ρ = ρ0a
−3(1+w) = (1 + z)3(1+w) . (1.12)

The second equality here relates the scale factor to the redshift, which relates the increase in
wavelength of photons due to the cosmological expansion as 1 + z ≡ λr/λe = a(tr)/a(te) (i.e.
the ratio between the received and the emitted wavelength).

The relevant matter species for the dynamics of the late universe are the following
(quoted abundances correspond to reference [20])

F Baryons: The term is used generically for electromagnetic interacting, stable fermions.
Its value can be inferred from the primordial deuterium abundance and the CMB
Ωb = 0.0225± 0.0006h−2.

F Photons: The CMB is the best blackbody observed ever. Its measured temperature
T = 2.7255± 0.0006K translates into a value Ωγ = 2.47 · 10−5h−2.

F Neutrinos: Although the amount of cosmological neutrinos is not directly observed,
their properties affect the formation of LSS. Current bounds on neutrino masses are
5.4 ·10−4 < Ωνh

2 < 3.0 ·10−3, where the upper bound is cosmological and the lower one
is obtained in terrestrial neutrino oscillation experiments. The neutrino mass translates
to Ωνh

2

F Cold Dark Matter: To correctly explain the formation of cosmic structure, there must
be a significant amount of non electromagnetically interacting matter which was non-
relativistic (i.e. cold) at the onset of galaxy formation ΩCDM = 0.112 ± 0.006h−2.
Dark matter is also essential to explain the CMB anisotropy pattern, as it is able to
cluster before recombination and form potential wells. Other observations, such as the
rotational curves of galaxies and the gravitational lensing by galaxy clusters provide
independent evidence of its existence.

1.1.5 The Cosmological Constant

The final ingredient is the Cosmological Constant (CC), i.e. a constant term in the Einstein-
Hilbert action (1.2) introduced to explain the acceleration of the cosmic expansion

SEH+Λ =

∫
d4x
√
−g 1

16πG
(R− 2Λ) , (1.13)
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Chapter 1: The Standard Cosmological Model

that modifies Einstein Equations

Rµν −
R

2
gµν + gµνΛ = 8πGTµν . (1.14)

The CC term can be incorporated into a redefinition of the energy momentum tensor in the
rhs. Its effect then is equivalent to a perfect fluid with TΛ

µν ∝ gµν , with negative pressure
p = −ρ and constant energy density ρΛ ≡ Λ/(8πG). Hence, the Cosmological Constant
represents a source of energy that does not dilute with the cosmic expansion, exactly the
properties one would expect from the energy stored in the vacuum [21].

Such a term would be unobservable in a theory based in a static space-time for which
only energy differences are observable. In GR, the CC couples to the determinant of the
metric in (1.13), thus affecting dynamics of the space-time. In particular, plugging p = −ρ in
the second Friedmann equation (1.6) with k = 0 shows that it produces a constant positive
acceleration

ä

a
=

8πG

3
ρΛ > 0 . (1.15)

That is, the effect of the Cosmological Constant on the universe expansion is opposite to the
one caused by standard, gravitating matter. Current observations suggest that the Cosmolog-
ical Constant is the dominant component in the cosmic energy budget, with ΩΛ = 0.73±0.03
[19].

1.2 The Need to Go Beyond

In this Section I will review some of the arguments to go beyond the standard cosmological
model, emphasizing those related with the Cosmological Constant as the source of cosmic
acceleration.

1.2.1 Theoretical Issues

The standard cosmological model relies on three pieces of new physics: inflation, dark matter
and the Cosmological Constant. Considering alternative paradigms might help to obtain a
better understanding of the model and search for possible connections between the different
mysterious elements. In this light, the idea of inflation provides the most compelling reason
to study alternatives to the Cosmological Constant. Inflationary scenarios require a period
of accelerated expansion similar to the one produced by a Cosmological Constant, but at a
much higher energy scale. On the other hand, inflation has to end in order to evolve into a
universe filled with matter, and hence the inflationary epoch can not be due to a Cosmological
Constant term.4 The fact that there might have been an acceleration mechanism at work in
the very early universe different than Λ suggests that a similar mechanism might be at work
in the late universe.

The Cosmological Constant also faces two naturalness problems related to its actual
value when interpreted as a vacuum energy and due to its time evolution.The lack of a
compelling theory for quantum gravity indicates that General Relativity has to be revised,
at least in the high-energy/small-scale regime. The modifications introduced in the pursue of

4In addition, the running of the spectral index for primordial perturbations ns = 0.963±0.014 [19] indicates
a departure from a “perfect Cosmological Constant” (ns = 1) at the time when the perturbations on the scales
probed by the CMB were seeded.
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1.2. The Need to Go Beyond

a renormalizable theory of gravity might yield some information on the value and properties
of Λ, or whatever mechanism behind cosmic acceleration.

The Cosmological Constant Problem

Since the Cosmological Constant is equivalent to a constant energy density in the action, its
effective value receives different contributions. The most problematic of these is the expected
from quantum fields in the vacuum [22]. The standard, quantum mechanical harmonic os-
cillator (or any other bound system) has a energy proportional to the frequency ~ω even in
the absence of excitations. As a free quantum field is described as a collection of infinite
harmonic oscillators, its energy in the vacuum state is infinite in principle, although it can
be renormalized to an arbitrary values by the addition of a suitable counter term Λ0. Em-
ploying dimensional regularization to preserve Lorentz invariance and removing the divergent
contribution, the resulting vacuum energy associated to a scalar field of mass m is [23]

∆Λeff =
Gm4

8π
log

(
m2

µ2

)
, (1.16)

where µ is a renormalization scale. Although the contribution is dependent on the choice of µ,
the above expression shows how the corrections are sensitive to the mass scales present in the
theory. The details are different for other types of field, but the conclusion is similar: They
all produce an effective contribution to the total Cosmological Constant which is generically
much larger than the true value, i.e. Λ is unstable against quantum corrections (technically
unnatural).

In addition, the Cosmological Constant receives a classical contribution from the field
potentials, due to the phase transitions predicted within the standard model of particle
physics, e.g. electroweak symmetry breaking. At very early times where the temperature of
the universe is T & mH ≈ 125GeV, the potential for the Higgs field has a single minimum, and
hence the field fluctuates around a unique vacuum state. When the electroweak transition
occurs, the Higgs potential is deformed into a Mexican hat form, the central extremum
becomes unstable and the vacuum state is displaced towards a degenerate set of minima.
Besides being responsible for the masses of the W and Z bosons, this process displaces the
minimum of the Higgs potential by ∆ρEW = v4/4 ∼ O(100GeV)4, where v is the vacuum
expectation value of the field and λ is the quartic self coupling [23]. A constant term can be
added to set the value of the potential energy to zero, but only before or after the transition.
According to General Relativity, this offset would produce the same effect as a (perhaps
negative) CC with a value much larger than the observed one ∆ρ ∼ 1055ρ0. Similarly, a
lower energy phase transition within quantum chromodynamics would induce an imbalance
in the effective Cosmological Constant of order ∼ (100MeV)4, which is also too large, with
∆ρ ∼ 1045ρ0.

When one considers all the terms that contribute in the same way as the Cosmological
Constant

Λtotal = Λ +
∑
fields

∆Λeff + 8πG∆ρPT + 8πGρQCD , (1.17)

it turns out that the different contributions have to cancel with exquisite precision to yield
the observed value today. This fine tuning is known as the Cosmological Constant problem.

There are important caveats to these arguments. The quantum corrections have been
computed assuming a perturbative expansion in the fields. More importatnly, the whole
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Chapter 1: The Standard Cosmological Model

computation is performed in a fixed background metric and does not take into account the
effects of gravity, which might be crucial to address purely gravitational effects such as the
acceleration induced by constant terms in the action. Although the CC problem should be ad-
dressed within a consistent framework for quantum gravity, general covariance suggests that
local physics can be described by the special relativity in a sufficiently small region, offering
some support to the above argument. If the CC problem can not be solved within quantum
gravity, it might be pointing towards the existence of a yet unknown principle or mechanism
that keeps its value small or zero, and which may have observational consequences.5

The Coincidence Problem

The energy densities of matter and Cosmological Constant are similar today, but their relative
scaling, ρΛ/ρm ∝ a3, implies that Λ was completely negligible in the cosmological past and
will be absolutely dominant in the future. If we think of the Cosmological Constant as an
initial condition set in the early universe (when the energy density was very high compared
with the current one), it seems very unlikely that it acquires a value comparable to matter at
the present cosmological epoch, when galaxies and other large scale structures have formed.
Had the Cosmological Constant been a couple orders of magnitude higher, the universe would
be empty of large scale structure. But if it had been just a couple orders of magnitude smaller
it would be hardly measurable.

The lack of an explanation for why the Cosmological Constant becomes relevant at the
present epoch is known as the coincidence problem. Although this issue is somehow aesthetic,
this piece fine tuning might be pointing towards something more complex. The situation is
analogous to the inflationary paradigm. Without inflation, the observed value of the spatial
curvature Ωk ∼ 0 would seem oddly fine tuned. The inflationary paradigm is able to give
a natural explanation for the current bounds and solve the (aesthetic) problem of the small
spatial curvature, on top of the more severe problems that lead to the idea in the first place.

1.2.2 Observational Reasons

Even if the standard model turns out to be correct and the only remaining task is to un-
derstand the details, the only way to prove it as a physical theory is by disproving the
alternatives. This provides an explicit way to test the assumptions behind the standard cos-
mological model, while searching potential signatures of new physics. In addition, exploring
alternative scenarios helps to improve the model independence of cosmological probes, and
thus their reliability.

Regardless of its empirical success, the cosmological constant is a very stiff model. If
further data becomes incompatible with a non-evolving cosmological constant (even if the
evolution is tiny) the cosmological constant would be ruled out and an alternative theory
becomes necessary. There are actually some observations that seem at odds with the standard
paradigm, which are summarized below. Although these measurements are disputed due to
a lack of statistical significance or systematic effects, they might be the first outliers pointing
towards necessary modifications.

5An argument of symmetry might explain both a vanishing and a small value for Λ, in a similar way as
symmetries set certain masses to zero (e.g. the photon by gauge symmetry) or protect their value against
quantum corrections (e.g. fermions and broken chiral symmetry). More generally, it is conceivable that a
theory of quantum gravity may be pathological if Λ > 0 and Λ < 0, in which case Λ = 0 would be a consistency
requirement.

10



1.2. The Need to Go Beyond

Model Independence of Cosmological Probes

The standard cosmology presented in the previous pages is by far the best worked out model
in the market.6 It is so widely accepted that many observational analyses implicitly include
some of the model hypotheses in the treatment of raw data. For example, many cosmological
probes of large scale structure require assuming a fiducial cosmology in order to convert
redshifts and angles into physical separations, and sometimes effects are tested (or even
calibrated) against numerical simulations.

Sometimes, even the quantities used to relate theory and observations are meaningless in
a non standard cosmology. Examples of this are the A(z) = DV (z)

√
ΩmH2

0/z function [24],
that characterizes the Baryon Acoustic Oscillations feature measured in large scale structure
surveys, or the CMB shift parameter (2.12). They incorporate a factor

√
Ωm that is useful

to eliminate degeneracies of the model. Although practical for standard cases, this extra
dependence invalidates A(z) as a way to constrain models for which ρm(z) does not evolve as
(1 + z)3 (e.g. coupled quintessence or inhomogeneous models for which ρm(z) = ρm(r, t)

∣∣
z
).

On the other hand, using the ratio between the sound horizon at the drag epoch (which
sets the BAO feature initially) and a distance to that redshift makes the measurement much
easier to interpret in more general scenarios.

Testing non-standard cosmologies is helpful to realize which quantities make the more
sense as physical effects and make observational probes as model-independent as possible.
The analysis of raw data should be performed without assuming fiducial cosmological models
and aim at the extraction of physical effects that are both observable and possible to com-
pute and interpret within any given cosmology. Chapter 2 introduces several cosmological
observables, emphasizing the model independence of the different probes.

Observational Outliers

It is important to bear in mind that the certain sets of evidence pointed towards the existence
of mysterious elements in the standard model even before the evidence from supernovae,
CMB and large scale structure observations was solid or even existed. Claimed problems of
ΛCDM on large scales are the large scale velocity flows, alignment and lack of power of low
multipoles in the CMB angular power spectrum and large scale alignment in the QSO optical
polarization data. Other potentially problematic features are related to small scale structure
formation. These include the tension between dark matter simulations and observations
with regard to both the density profiles of dark matter halos and for the number of predicted
substructures inside a given host halo, the baryonic Tully-Fisher relation and the constant
galactic surface density.7 The seemingly discrepant measurements might be due to statistical
fluctuations, systematic measurement effects or imprecise theoretical models. However, they
are useful to keep in mind, for they might be pointing towards a failure of one or more of the
standard hypotheses.

6For example, non-linear structure formation within the SCM has been worked out using different pertur-
bative schemes (e.g. linear and higher order perturbation theory, Lagrangian and renormalized perturbation
theory) and numerical N-body simulations involving increasing resolution. Although some progress has been
made, the level of understanding is considerably lower for alternative models.

7The reader is referred to reference [17] for an overview.
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Chapter 1: The Standard Cosmological Model

1.3 Exotic Tastes and Alternative Recipes

In an effort to provide phenomenologically richer and theoretically more pleasant alternatives
to Λ, a vast amount of proposals have been considered [7, 9, 25–27]. These alternatives usually
appeal to an unknown principle to set the total CC to zero,8 and provide an alternative
mechanism to accelerate the universe, which necessarily requires an additional modification
of one of the assumptions behind the standard model:

1. Allowing for large scale inhomogeneity - See Section 1.3.1 and Chapter 3.

2. Extending the Einstein-Hilbert action, Eq. (1.2)

2.1. Adding a new (dark) energy component - See Section 1.3.2 and Chapter 5.

2.2. Modifying the gravitational sector or the coupling to matter - See Section 1.3.3
and Chapters 4, 6.

Other possibilities that aim to explain supernovae dimming have been proposed but will not
be considered here. These include as axion-photon mixing [31, 32], gray dust and super-
novae evolution. Although these models can easily explain the supernovae observations, they
generally fail when other probes are taken into account.

An additional approach is to consider parameterizations that extend the theory in cer-
tain directions and can be compared with observations, regardless of the physical origin
of the modifications. The simplest example is the constant equation of state dark energy
model wCDM, which allows one to test the allowed departures from a Cosmological Con-
stant w = −1. This approach allows one to test consistency relations and allowed departures
observationally. More sophisticated approaches have been proposed in order to encompass
very general modifications in a series of free functions (e.g. the Post-Friedmann approach
[33]). Choosing a parameterization (e.g. for w(z)) has the problem of pre-selecting a very
restricted subset of the space of functions that define the theory. More generally, one can
try to reconstruct the free functions that define the cosmological model (either fundamen-
tal or parametric) without any a-priory restriction. This has been done in the context of
cosmic acceleration using genetic algorithms [34] and Gaussian random processes [35]. Pa-
rameterizations can capture physical features in a model independent way, but going beyond
parameterizations is necessary to have complete, self consistent models that can be explored
in different regimes.

The alternatives are described in the following subsections, focusing on the context
relevant for the results presented in Chapters 3-6. For a further details and a broader context
the reader is referred to the excellent reviews on inhomogeneous cosmologies, dynamical dark
energy and alternative theories of gravity by Clarkson [8], Copeland et al. [9] and Clifton et
al. [7] respectively.

1.3.1 Inhomogeneous Models

The cosmological information is gathered through photons from distant sources (e.g. super-
novae or galaxies), that were emitted at the time corresponding to a given redshift z and
arrive from a given direction n̂. Hence, most cosmological probes are only able to explore a

8This requires solving the old cosmological constant problem. Several attempts in this direction have been
proposed [28–30]
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1.3. Exotic Tastes and Alternative Recipes

three dimensional submanifold (within the four dimensional space-time), that is, the light-
cone spanned by the past null geodesics converging to our galaxy at the present time. If the
universe is homogeneous on the observed scales, this information can be used to infer the
time evolution of the cosmological model. But in general, observations based on direct light
can not tell apart time evolution from spatial variation.

The level of CMB isotropy suggests that there is little dependence on the direction
of observation n̂ on very large scales. It is then justified to consider spherically symmetric
but inhomogeneous metrics. If the pressure component can be neglected, the result is the
Lemâıtre-Tolman-Bondi metric

ds2
LTB

= −dt2 +
A′2(r, t)

1− k(r)
dr2 +A2(r, t) dΩ2 , (1.18)

which contains the FRW metric (1.5) as the particular case of no radial dependence A(r, t) =
a(t)A0(r), k(r) = k. The above metric is able to explain the supernovae observations with-
out a Cosmological Constant if the matter content represents an underdense region of size
comparable to the Hubble radius (∼Gpc) and our galaxy is located very close to the center
of symmetry r = 0. The apparent acceleration is a spatial effect in these models: the lower
matter density around our galaxy decelerate the expansion less at low redshift, while the
higher matter density far away increases the deceleration at higher redshift.

Living at the center of an large, underdense region seems unnatural for two reasons. The
first one is the choice of a special location (which is contrary to the Copernican Principle), and
the second one is that so large and spherically symmetric voids are very unlikely to form out
of the standard initial conditions that inflationary models typically predicts (in terms of the
size and the amplitude of the initial perturbation). However, the LTB metric is compatible
with the Big Bang theory (i.e. very homogeneous universe) if the local expansion rate H0(r)
is chosen to make the age of the universe space independent and the matter components
are adiabatically mixed.9 In that case, the LTB metric describes the growth of an initial
perturbation with arbitrarily small amplitude at early times.

On the other hand, any judgment about our underlying cosmological model should rely
on observations rather than aesthetic criteria. The modifications on the matter distribution
necessary to fit the supernovae data also alter the predictions for several other cosmological
observables, which can then be used to test the model. Indeed, combinations of different
data sets can be used to rule out inhomogeneous cosmological models without dark energy
in four different ways:

1. Tension between local expansion rate and the CMB.

2. Isotropy of the CMB for off-center observers, as constrained from the kinematic Sunyaev-
Zel’dovich effect. This probe is very powerful, and can be used to rule out models with
inhomogeneous Big-Bang time [36].

3. Tension between SNe and BAO due to the effects of the inhomogeneous expansion.

4. Tension between SNe and galaxy ages [37].

9Once the symmetry is reduced, it is possible to extend the inhomogeneity to other degrees of freedom,
e.g. baryonic/dark matter ratio or space dependent age of the universe.
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Chapter 1: The Standard Cosmological Model

Chapter 3 deals with the details of this type of models and their comparison to obser-
vations. The results related to the third method are presented together with the references
to the work where methods one and two are described.

Effects from Standard Inhomogeneity

Although they are not considered in the present thesis, there are two effects related to the
inhomogeneity of the universe that might be relevant for the dark energy problem. The first
has to do with the interpretation of observations assuming a homogeneous cosmology. Effects
from small scale inhomogeneities, e.g. the lensing of supernovae light by cosmic structures,
might affect the recovered value of the cosmological parameters and should in principle be
taken into account [27, 38]. The second effect has to do with the non-linear nature of General
Relativity and the process of averaging to obtain the FRW cosmological description. Since
the Einstein tensor contains higher powers of the metric, its average is different than the
Einstein tensor computed out of the average metric, i.e. 〈Gµν [gµν ]〉 6= Gµν [〈gµν〉]. If the non-
linear corrections were strong enough to explain the cosmic acceleration, they would further
provide a solution to the coincidence problem by linking the acceleration to the epoch in which
non-linear structures form on small scales. However, the issue of whether these effects can
actually modify the background dynamics significantly is still an open question (cf. [39, 40]
and references therein for different points of view).

1.3.2 Dynamical Dark Energy

If the universe is homogeneous and general relativity holds, the second Friedmann equation
(1.7) shows that cosmic acceleration only requires that the total energy-momentum satisfies
p < −ρ/3. It is therefore possible that a new kind of cosmological fluid causes the acceleration
as long as the strong energy condition is not satisfied [41, 42]. For example, a canonical scalar
field

Sφ = −
∫
d4x

(
1

2
gµνφ,µφ,ν + V (φ)

)
, (1.19)

becomes equivalent to a constant term if the field derivatives (first term above) are negligible
with respect to the potential.In the context of cosmology, such a situation is known as
slow roll. Scalar fields have been used copiously to build models of inflation and late time
acceleration. The theory described by the above action is usually known as quintessence and
is described by the Klein-Gordon equation (with an arbitrary potential)

2φ− V ′(φ) = 0
FRW−−−→ φ̈+ 3Hφ̇+ V ′(φ) = 0 . (1.20)

Despite the arbitrariness in the choice of V , quintessence models have been fairly well
characterized. The energy momentum obtained from the above action ρ = X+V , p = X−V
restricts the equation of state to w ≥ −1, with the equality corresponding to the case of a
completely homogeneous and non-evolving field (e.g. at the minimum of a potential). One
can further distinguish between models thawing out, in which the field is initially frozen by the
Hubble friction, and starts evolving towards higher values of w when V ′ ∼ Hφ̇, and models
freezing in, when the equation of state is evolving towards w ∼ −1 [43]. For certain choices of
the potential, scalar fields are able of tracking the dominant energy component, contributing
a fraction of early dark energy during most of the cosmic history [9, 44–47]. Tracking models
have been used to alleviate the coincidence problem. Their presence throughout the whole
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1.3. Exotic Tastes and Alternative Recipes

cosmic history increases the Hubble rate at all times, indirectly reducing the clustering rate of
ordinary matter. Other than early dark energy, quintessence fields affect very little the growth
of cosmological perturbations and are very difficult to distinguish with large scale structure
observations. The speed of sound for field perturbations is equal to the speed of light and its
mass is of the order of the Hubble constant. Therefore these fields cluster negligibly except
on scales comparable to the Hubble radius H(t)−1, which produces a small modification on
the large scale CMB (see Section 2.3). In addition, the potential can be chosen to satisfy any
expansion history (with w ≥ −1), making the general case very unpredictive in the absence
of further requirements on V .

More general theories than (1.19) can be considered, as can be described by the gener-
alized k-essence action

SK =

∫
d4xL(X,φ) , (1.21)

where X ≡ −1
2g
µνφ,µφ,ν is the standard (or canonical) kinetic term.10 K-essence fields can

have considerably different features than their quintessence cousins (e.g. negative equation of
state, variable speed of sound). Many theories derived from the above action are pathological
or unstable in some sense (i.e. introduce ghost degrees of freedom or superluminal signal
propagation).

Chapter 5 explores a generalized k-essence scalar field derived from a disformal relation
(1.27) out of which a set of known dark energy models can be derived in some limit.

Coupled Dark Energy

It is also possible to consider theories in which the scalar field modifies the gravitational or the
matter sector in the action. This will generally produce a theory of modified gravity (see next
Section), unless the coupling is restricted to just part of the matter Lagrangian, explicitly
violating the weak equivalence principle. That case represents an interaction between the
scalar field that provides dark energy and a particular species

S =

∫
d4x

(√
−gR

16πG
+ Lφ(X,φ) + Lc(gµν , φ, ψc) + Lu(gµν , ψu)

)
, (1.22)

where ψc/u denote the coupled/uncoupled matter. An interesting case is given by a scalar
field coupled only to dark matter [48, 49] or neutrinos [50]. Since these species can not
be used for gravitational experiments, such models can feature an additional, scalar field
mediated force with cosmological implications and evade the precision tests of gravity in the
Solar System. On the other hand, connecting the dynamics of dark energy to other cosmic
constituents offers an interesting possibility to try to alleviate the coincidence problem.

The paradigmatic example is the scalar field conformally coupled to neutrinos, for which
the field only enters the matter Lagrangian through a multiplicative factor of the metric
tensor Lc(A(φ)gµν , ψc) [50, 51]. This coupling modifies the scalar field and neutrino energy
conservation equations with a term A(φ)(ρ − 3p) that vanishes as long as the neutrinos are
relativistic (p = ρ/3). The coupling is then used to trigger a slow roll phase in the scalar
field when the neutrinos become non-relativistic. Since the neutrino mass has a similar order

10Even more general theories free of pathologies can be considered (see equation 1.28). However, they
generally introduce modifications in the gravitational sector and will hence be described in the next Section.
Appendix C summarizes the most important equations for the theory described by the action (1.21).
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of magnitude to the energy scale of the observed Cosmological Constant, these mass varying
neutrinos dark energy models provide a solution to the coincidence problem by relating both
scales. Unfortunately, the extra interaction introduced has considerable impact on large
scale structure formation and addressing the viability of the model requires considering the
non-linear regime [52, 53].

Chapter 6 examines the implications of generalizing the conformal coupling. As a poten-
tial application, the cosmological implications of a purely disformal coupling to dark matter
are described in Sections 6.3.1, 6.3.1 and 6.4.2.

1.3.3 Modified Gravity

Finally, the dark universe paradigm calls for a revision of Einstein theory. The great empirical
success of GR has been to explain gravitational phenomena on the Solar System and compact
objects like neutron stars and pulsars. The mysterious elements of the standard cosmological
model are introduced to alter the dynamics on scales for which there is little or no independent
probe of the workings of gravity. It remains possible that cosmic acceleration is due to a
modification of gravitational dynamics manifest on cosmological scales.

It might seem at first that the action for General Relativity (1.2) is rather arbitrary,
considering the enormous freedom available in the construction of geometric scalars. How-
ever, there are essential limitations in the choice of the theory of gravity. Ostrogradski’s
Theorem [54] states that there exists a linear instability in any non-degenerate theory whose
fundamental dynamical variable appears in the action with higher than 2nd order in time
derivatives. By constructing the Hamiltonian for this type of theories, the theorem shows
that it is not bounded from below and therefore it accepts configurations with arbitrarily
large negative energy [55, 56]. It is possible to bypass Ostrogradski’s result by considering
degenerate theories, i.e. those in which the highest derivative term can not be written as a
function of canonical variables. The dynamics of this type of theories is described by second
order equations of motion, even while the action contains higher derivative terms.

The gravitational action is severely constrained by Ostrogradski’s Theorem because
the curvature tensors do contain second derivatives of the metric. Lovelock’s Theorem [57]
states that the only action of the form

∫
d4xL[gµν ] (i.e. based on a local scalar Lagrangian

solely depending on the metric tensor and its derivatives) which gives rise to second order
equations of motion is of the Einstein-Hilbert form with a Cosmological Constant (1.13).
The introduction of other geometric invariants not only changes the character of the theory
substantially, but may render it unstable. The alternative theories can be classified as ways
out of Lovelock’s Theorem [7]:

T1: Add additional degrees of freedom other than the metric.

T2: Work in a space with dimensionality different from four.

T3: Accept higher than second derivatives of the metric in the field equations.

T4: Give up either rank (2,0) tensor field equations, symmetry of the field equations under
exchange of indices, divergence-free field equations or locality.11

11Certain non-local theories with an infinite number of derivatives provide another way around Ostrograd-
ski’s Theorem. These and other T4 theories will not be discussed further here.
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Some theories may fall into different categories within the above classification. High derivative
theories (T3) that are acceptable in light of Ostrogradski’s Theorem can usually be expressed
as a second order theory with extra degree(s) of freedom (T1). This includes the f(R) theories
in which the Einstein-Hilbert action includes an arbitrary function of the Ricci scalar. These
theories can be shown to be safe [55] through its equivalence to a scalar tensor theory with
a Lagrangian density

√
−g (φR+ U(φ)) (plus a kinetic term for φ), where U(φ) depends on

the functional form of the original f(R). Certain higher dimensional theories (T2) can also
be expressed in terms of additional degrees of freedom (T1) at an effective level.

Scalar-Tensor Bimetric Theories

The addition of scalar degrees of freedom has been extensively exploited to build modifications
of gravity. Metric theories already include a scalar d.o.f. in addition to the propagating
spin-2 tensor. This scalar mode is non-dynamical if the action has the EH form, but some
alternative theories make it active, which is the reason why f(R) can be expressed as a healthy
scalar-tensor theory. In addition, scalars do not introduce preferred directions and mediate
universally attractive interactions.12 The paradigmatic example of scalar modifications are
the old school scalar-tensor theories∫

d4x
√
−g
(
h(φ)

R

16πG
+X − V (φ) + LM (gµν , ψ)

)
, (1.23)

where the field has been redefined as to yield a canonical kinetic term X = −1
2∇µφ∇

µφ. By
a field dependent local rescaling of the metric or conformal transformation

gµν → h−1(φ)gµν , (1.24)

it is possible to remove the field dependent coefficient from the Ricci scalar. The resulting
theory reads ∫

d4x
√
−g
(

R

16πG
+ X̃ − V (φ̃) + LM (h−1(φ̃)gµν , ψ)

)
, (1.25)

where φ → φ̃ has been redefined in order to keep the canonical form of the scalar field La-
grangian [7]. Theories related by metric transformations of the form (1.24) are said to be
expressed in different conformal frames. The examples above show two particularly interest-
ing choices, the Jordan frame (Jf) (1.23) in which matter couples to a single rank-2 tensor
and the Einstein frame (Ef) (1.25) in which the gravitational sector has the Einstein-Hilbert
form but matter couples to an effective metric (1.24) which explicitly depends on the scalar
field.

The conformal equivalence between the theories (1.23) and (1.25) motivates considering
more general bi-metric theories for which the effective metric in the gravitational and matter
sectors is allowed to be different.13 An interesting case is when the gravitational sector is of
the Einstein-Hilbert form

SEH−BM =

∫
d4x

(√
−gGR

[
gGµν
]
−
√
−gMLm

(
gMµν , ψ

))
, (1.26)

12Theories involving vectors have been considered as candidates for cosmic acceleration (e.g. [58, 59]) and
modified gravity that attempt to avoid Dark Matter (TeVeS) [60] or spontaneously break Lorentz invariance
(Einstein-Aether) [61], among other applications.

13Although the term bi-metric often refers to theories with two fundamental rank 2 tensors (tensor-tensor
theories) [7], it will be used here in the sense described in the text (e.g. Eq. 1.26 and its extensions).

17



Chapter 1: The Standard Cosmological Model

but the relation between the two metrics is arbitrary gGµν 6= gMµν . An advantage of this choice
is the ease to identify in which limits GR can be recovered, which greatly simplifies the
construction of phenomenologically viable scenarios. Bekenstein [62] argued that the most
general relation between the two metrics that respects general covariance and involves a
single scalar degree of freedom has the form

gMµν = A(φ,X)gGµν +B(φ,X)φ,µφ,ν . (1.27)

This expression is known as a disformal relation, and it generalizes the well known conformal
transformation (1.24) by the addition of a term depending on the gradients of the scalar field.
Unlike in the conformal case, the above relation establishes different causal structures for the
two metrics whenever B 6= 0. The class of dark-energy models obtained from a canonical
scalar field constructed using a disformal metric are studied in Chapter 5. In Chapter 6 the
analysis is generalized to bi-metric theories (1.26) in which matter is directly coupled to a
metric of the form (1.27).

Conformally related scalar-tensor bi-metric theories can be classified into the dark en-
ergy type and self accelerating (cf. [63]). Viable cosmological theories have to provide accel-
eration in the Jordan frame metric, where cosmological observations are implicitly performed.
Theories of the dark energy type are accelerated also in the Einstein frame. Cosmology in
the Ef is described by Friedmann equations, and therefore acceleration implies the existence
of an energy component with p < ρ/3 in this frame. Therefore, those can be thought of
as the generalization of the Dark Energy models introduced in Section 1.3.2. On the other
hand, self accelerating theories are those in which the acceleration occurs only in the Jordan
frame. These theories imply that there is no effective cosmological constant in Einstein frame
and the acceleration is entirely due to the conformal factor. Although this classification is
conceptually useful, it does not contemplate the possibility of relating theories by means of
disformal transformations, as will be explored in Section 6.2.

One may consider the generalization of Lovelock’s Theorem in the case of a scalar tensor
theory, i.e. what is the most general local action that produces second order equations of
motion. Following Bekenstein, the matter metric can be allowed to have a conformal as well as
a disformal contribution (1.27). For the gravitational sector, it is the Horndeski Lagrangian.
The most general gravitational sector was first derived by Horndeski [73] and has received
considerable attention in recent years [30, 64, 74–78]. It is given by the Horndeski Lagrangian

LH =
5∑
i=2

Li . (1.28)

The different pieces can be written (up to total derivative terms that do not contribute to
the equations of motion) as [76]

L2 = G2(X,φ) , (1.29)

L3 = −G3(X,φ)2φ , (1.30)

L4 = G4(X,φ)R+G4,X

[
(2φ)2 − φ;µνφ

;µν
]
, (1.31)

L5 = G5(X,φ)Gµνφ
;µν − 1

6
G5,X

[
(2φ)3 − 3(2φ)φ;µνφ

;µν + 2φ ;ν
;µ φ ;λ

;ν φ ;µ
;λ

]
. (1.32)

18



1.3. Exotic Tastes and Alternative Recipes

Theory G2 G3 G4 G5 gMµν

General Relativity Λ 0
M2
p

2 0 gµν

Quintessence (1.19) X + V (φ) 0
M2
p

2 0 gµν

General k-essence‡ (1.21) K(X,φ) 0
M2
p

2 0 gµν

Old school Scalar-Tensor

- Jordan Frame (1.23) X̃ + V (φ̃) 0 h(φ)
M2
p

2 0 gµν

- Einstein Frame (1.25) X + V (φ) 0
M2
p

2 0 h−1(φ)gµν

Covariant Galileon§ [64] c1φ− c2X
c3
M3X

M2
p

2 −
c4
M6X

3c5
M9X

2 A(φ)gµν

Kinetic Gravity

Braiding [65, 66] K(X,φ) G(X,φ)
M2
p

2 0 gµν

Purely Kinetic

Gravity [67] X 0
M2
p

2 −λ φ
M2
p

gµν

DBI Probe Brane† [68] λγ−1 −M3
5 γ−1M2

4 −βM
2
5

m2 γ
2 gµν

Disformally Coupled
Scalar [2, 69] X + V (φ) 0 0 0 Agµν +Bφ,µφ,ν

‡ See Table 5.1 for an assortment of k-essence models constructed using disformal relations.
§ The usual Galileon [70] is recovered in the absence of curvature. The analysis of these theories often

postulates a conformal coupling betwen the matter and the field (a.k.a. conformal Galileon).
† References [71, 72] provide generalizations constructed within the probe brane scheme.

Table 1.1: Horndeski projection of Modified Gravity and Dark Energy theories. Here
M2
p = (8πG)−1, X = −1

2φ,µφ
,µ and γ = 1√

1−2X
is a brane Lorentz factor.

On top of a generalized k-essence (1.29), the remaining pieces (1.30-1.32) fix the allowed
higher derivative dependences, which rely on the anti-symmetric structure of φ;µν terms
to cancel higher derivatives in the equations of motion. Note that a constant term in G4

produces Einstein gravity. One can then consider the scalar-tensor theory

SH−BM =

∫
d4x

(
√
−gLH +

∑
i

√
−gM,iLM (gM,i

µν , ψ)

)
, (1.33)

as the most general case, where different matter metrics gM,i
µν have been allowed for the

different components (e.g. different coupling to dark matter and baryons is allowed) and
no particular Frame has been prescribed. Table 1.1 contains several examples that can be
described within the Horndeski Lagrangian, including some particular cases studied in the
following Chapters. It has been written based on the work of De Felice, Kobayashi and
Tsujikawa [76], who considered cosmological perturbations in the quasi-static approximation
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Chapter 1: The Standard Cosmological Model

for a number of these theories. Table 1.1 includes some further examples and does not
implicitly restrict the theory to the Jordan frame.

The higher derivative terms have been found to arise in the effective description of
several higher dimensional theories.14 G3, G4 and G5 are the covariant generalizations of
the third, fourth and fifth Galileon terms [70]. The third order Galileon term appears in
the decoupling limit of the five-dimensional Dvali-Gabadadze-Porrati model (DGP) [79],
and the other two were proposed as an extension. This theories posses Galilean invariance
φ → φ + c + bµx

µ in flat space-time, a symmetry that grants beneficial properties such as
the non-renormalization of the coupling by quantum effects [80]. This type of theories were
also obtained in a unified way from extra-dimensional models in which matter is confined to
a 3+1 dimensional brane embedded in a larger bulk space [68, 71, 72, 81–83].15 In the case
of a single extra dimension [68] the terms obtained out of the brane tension, and extrinsic,
Ricci and Gauss-Bonnet curvature fall into G2, G3, G4 and G5 when projected into the
Horndeski’s Lagrangian (1.28). In models with large extra dimensions, the dynamics should
interpolate between the small scales in which the physics is effectively four dimensional and
the large scales in which the existence of a bulk space becomes manifest. The Vainshtein
effect described below allows this interpolation by hiding the scalar mediated force within a
certain radius from point sources, i.e. it provides a screening mechanism for the modifications
to General Relativity on small scales.

Screening mechanisms are central in the construction of gravitational theories that have
significant cosmological implications while remain consistent with precision gravity tests.
They provide a way to keep the scalar degrees of freedom inactive in environments which are
similar to the Solar System. These mechanisms are usually analyzed in a frame where there is
a conformal coupling between the field and matter, in which the scalar force is proportional
to the spatial gradient of the field. Screening mechanisms can be classified as kinetic or
potential:

• Kinetic screening mechanisms rely on the kinetic terms of the field to hide the scalar
force. In the Vainshtein mechanism [84] higher derivative self interactions (κ1, κ3, κ8 6=
0) do not allow large gradients around point sources. The spatial derivatives of the
field are suppressed within a certain Vainshtein radius from the source. In the simplest
case (G2 = X,G3 = m−2, G4 = M2

p /2, G5 = 0) it reads

rV ≈
(

2GM

m2

)1/3

≈ 10Mpc

[(
H0

m

)2 M

1015M�

]1/3

, (1.34)

where M is the point source mass and M� is the mass of the Sun.

A form of kinetic screening can also be achieved if the scalar field coupling to matter
involves a disformal part, in which case the higher derivative terms of the field equa-
tion acquire an energy density dependence [(A− 2BX)gµν −BTµν ]φ;µν , and the field
decouples in the limit ρ→∞. The consequences of the disformal screening mechanism
are explored in Section 6.5.

14As these theories should accept an effective, four dimensional representation in certain circumstances, the
geometric origin of these terms is plausibly what renders them viable in light of Ostrogradski’s Theorem.

15The action for this type of theories is constructed using geometric scalars computed out of the induced
metric ḡµν = gµν + π,µπ,ν , which has the same form as the disformal relation (1.27) with A,B = 1. The field
π represents the position of the brane in this scheme. See Section 6.2 for a discussion.
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1.3. Exotic Tastes and Alternative Recipes

• Potential screening mechanisms rely on the interplay between the coupling and the
potential to hide the scalar force. When mediated by a scalar particle, the potential
associated to the scalar force acquires the Yukawa form

Φs(r) =
α

r
e−mφr , (1.35)

where α is the intensity of the coupling and mφ is the mass of the scalar, that determines
the range of the interaction. Its value is given by the second derivative with respect to
the field of the effective potential Veff (φ) = V (φ) +A(φ)ρ where a conformal coupling
to matter has been assumed.

The Chameleon mechanism [85, 86] requires a decreasing potential and an increasing
coupling (e.g. V = M5/φ and A ∝ eβφ/Λ). It relies on the environment dependent mass
of the scalar to grow large in dense environments, so that massive objects contribute
to the scalar force only through a thin shell close to the surface. The Symmetron
mechanism [87, 88] postulates a degenerate potential with two minima and a coupling
that vanishes if φ = 0 (e.g. V ∝ (φ2 − φ2

0)2 and A = 1 + φ2/Λ2). If the energy density
is low, the field sits at ±φ0 and the coupling is active. If the density is high, the
symmetry is restored in the effective potential and φ ∼ 0. Therefore, screened objects
only contribute to the force through the matter close to their surface.

The cosmology and local gravitational effects of alternative theories of gravity featuring
screening mechanisms has been extensively studied (e.g. [89–95]). Theories endowed with
mechanisms of the potential type are bound to field ranges m−1

φ . 1Mpc in order to keep the
Sun screened from the scalar force [63], and therefore modifications to structure formation
occur only on non-linear scales.

The results on Modified Gravity and Dark Energy models presented in Chapters 5 and
6 concentrate on theories which involve disformal relations (1.27) in their construction. A
disformally constructed canonical scalar field Lagrangian encompasses many proposed dark
energy models for different choices of the free functions, as it is explored in Section 5.1.1. The
existence of two causal structures in this type of theories makes it easy to construct models for
cosmic acceleration. In a FRW background, the two metrics are related by ḡ00 = −1 +Bφ̇2,
so the field enters into slow roll whenever Bφ̇2 approaches unity. This has been explored in
detail for disformal quintessence (Section 5.2) and canonical quintessence disformally coupled
to matter (Sections 6.3.1 and 6.4.2).

Disformal relations also simplify the analysis of certain higher derivative theories, in-
cluding those of the DBI form, by providing an Einstein frame description in which the
gravitational sector is standard but matter appears disformally coupled to the field. This
transformations are explored in Section 6.2, where different frames are presented. Disformally
coupled theories also provide a screening mechanism that hides the modifications of gravity
in high density environments, as it is explored in Section 6.5. Based on the equivalence to
some higher derivative theories, this is likely to be the Vainshtein mechanism in disguise,
which appears different in the Einstein frame description. Disformal relations offer hence a
new way to construct and analyze scalar field extension of the Einstein-Hilbert action that
are relevant for the dark energy paradigm.
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Chapter 2

Observational Probes of Cosmology

Reality is not always probable, or likely. But
if you’re writing a story, you have to make it
as plausible as you can, because if not, the
reader’s imagination will reject it.

Jorge Luis Borges1

T
he first compelling evidence in favor of the cosmic acceleration came from
the study of high redshift type Ia supernovae (SNe), standard candles of sim-
ilar luminosity which appeared fainter than they would in a spatially flat,
matter dominated universe [11, 12]. In the following years, further infor-
mation obtained from other probes started confirming the standard picture
described in the previous Chapter. The Wilkinson Microwave Anisotropy

Probe (WMAP) [16, 18, 19] together with several ground based experiments [96–98] measured
the anisotropies in the Cosmic Microwave Background (CMB) with great precision. Their
data provides accurate information of the initial perturbations that seeded the cosmic struc-
tures that formed through gravitational collapse, and have proven very useful to constraint
cosmological parameters within the standard cosmological model and its extensions. Galaxy
surveys such as SDSS [24, 99–102] and WiggleZ [103, 104] have produced very detailed maps
of the Large Scale Structure (LSS) of the universe, including the signature of the Baryon
Acoustic Oscillation (BAO) scale in the matter correlation function. This finding provides a
standard ruler, whose length can be measured at different cosmological epochs and used to
track the expansion of the universe.

The precision and consistency of these and other probes allows one to place the stan-
dard cosmological model under increasingly stringent tests, which would hopefully allow to
establish the validity of the hypotheses as independently as possible from one another. This
great effort aimed at observationally determining the physical laws behind cosmic acceler-
ation will continue over the following decades. The Planck satellite will release even more

1Quoted in Worldwide Laws of Life: 200 Eternal Spiritual Principles (1998) by John Templeton.
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detailed maps of the cosmic microwave background [105] and the Dark Energy Survey (DES)
will probe the distribution of cosmic LSS during the following years [106]. This international
effort will continue with the Euclid satellite mission [107, 108], which will map the whole
extragalactic sky as deep as to reach redshifts of 2, before the accelerated expansion be-
gan. These galaxy surveys will determine the BAO scale with exquisite precision at different
cosmological epochs. In addition, their multi probe design makes them capable to extract
further cosmological data such as SNe, weak gravitational lensing, clusters of galaxies, that
will place even stronger constraints on departures from large scale homogeneity and General
Relativity.

The most relevant cosmological probes for the present Thesis are introduced in this
Chapter. Section 2.1 gives a general classification of the observables and the type of knowledge
that can be gained from them. Sections 2.2 to 2.6 give an overview of the effects and findings
that can be used to constraint cosmological models, emphasizing the underlying assumptions
introduced in their analysis and how they can be made model independent. The discussion
is necessarily brief. More details can be found in the recent review by Weinberg et al. [10]
and the references included in each Section.

2.1 Geometry and Dynamics

Cosmological probes can be classified into geometric and dynamical (see Table 2.1). Geo-
metric probes are based on background quantities and measure the zero order expansion, i.e.
the predicted quantities to be compared with observations depend only upon the elements
of the unperturbed metric, at least to a good enough approximation.2 A classical example is
the angular diameter distance

DA(z) =
l⊥
θ

∣∣∣∣
O(z)

=
1

1 + z

∫ z

0

dz′

H(z′)
, (2.1)

where the first equality is observational, i.e. the ratio of the (assumed) known physical length
in the transverse direction l⊥ of an object at redshift z and the measured angle it subtends in
the sky θ (assumed small), and the second equality is the prediction for a flat FRW cosmology.
Another useful geometric probe is the luminosity distance:

DL(z) =

√
L

4π F

∣∣∣∣∣
O(z)

= (1 + z)

∫ z

0

dz′

H(z′)
. (2.2)

Here the first equality is the observational value, related to the ratio between the (assumed
known) luminosity L and the observed flux F of an object at redshift z. The second equality
gives the value within a flat FRW cosmology. The angular diameter distance enters the
analysis of the BAO scale, as measured in the CMB and galaxy surveys (Sections 2.3 and
2.4.1), and the luminosity distance is compared with supernovae data (Section 2.5).

Geometric probes can also be applied to inhomogeneous cosmologies rather straight-
forwardly. The equivalent of the angular diameter and luminosity distances for this type

2That means, geometric probes depend only on the scale factor and the Hubble rate in FRW cosmologies,
perhaps through integrals or derivatives. In LTB models the cosmological probes may depend on the two scale
factors (or expansion rates), which are different in the radial and angular direction due to the inhomogeneity.
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Type Probe Redshift Range Section

Geometric Type Ia SNe 0.01− 1.5 2.5
Local expansion (H0) . 0.1 2.5
CMB priors z∗ 2.3.1, Ref. [19]
BAO scale from LSS 0.1− 0.8(3) 2.4.1
Primordial Nucleosynthesis ∼ 1010 2.2

Dynamical CMB primary ∼ z∗ 2.3
CMB secondary 0→ z∗ 2.3
CMB kSZ 0− 1 2.4.2, Ref. [109]
LSS power spectrum 0.1− 1(3) 2.4
LSS Lensing 0− 1 2.4.2
LSS Clusters 0− 1 2.4.2

Dynamical Local Gravity Tests 0 2.6, Ref. [110]

Table 2.1: Summary of cosmological probes. The different observables have been classified
into geometric and dynamical. z∗ is the recombination redshift, numbers in parenthesis refer
to expected limits for future surveys. See reference [10] for details.

of models is presented in equations (3.18,3.19), and the necessary considerations to use the
BAO scale are made in Section 3.2 in Chapter 3. Current data allow to rule out LTB models
with homogeneous Big-Bang and Λ = 0 using geometric probes only (Section 3.3).

Dynamical probes are those which crucially depend on the departures from the back-
ground metric on cosmological scales. A common coordinate choice to describe metric per-
turbations is the conformal-Newtonian gauge

ds2
CN

= a2(τ)
[
−(1 + 2Φ)dτ2 + (1− 2Ψ)d~x2

]
, (2.3)

which has been written in terms of the conformal time τ =
∫
a(t)dt. The gravitational

potentials Φ,Ψ are sourced by the perturbed energy momentum tensor δTµν(~x, τ), which is
usually expressed in terms of dimensionless variables such as the density contrast

δ(~x, τ) ≡ ρ(~x, τ)

〈ρ〉(τ)
− 1 . (2.4)

Cosmological observables sensitive to departures from homogeneity have the potential to
probe the gravitational collapse and the formation of cosmic structures. This information
is essential for non-standard cosmological models, as it potentially allows one to distinguish
modifications from gravity from non-interacting dark energy models with the same back-
ground history. Of particular interest are those effects that can be computed within linear
perturbation theory. Non-linear effects are more difficult to connect with the models on
trial, and the computational tools that allow their exploration have been considerably less
developed for non-standard cosmologies than for ΛCDM.

One of the challenges of cosmological model testing is to determine to what extent
each cosmological probe is affected by dynamical effects. Some probes, such as the BAO
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scale in LSS and CMB distance priors are intrinsically dynamical. But since the physical
quantities involved in the comparison can be reliably computed using just the background
information, they are considered geometric observables. No probe is purely geometric, as
there will always be dyanamical effects if sufficient precision is achieved (e.g. through peculiar
motions). However it is a useful classification to bear in mind.

2.2 Primordial Nucleosynthesis

The first event that yields direct information about the early universe involves the formation
of the first composite nuclei, a period known as primordial nucleosynthesis or Big-Bang
Nucleosynthesis (BBN) [111]. At the onset of BBN, weak interactions keep protons and
neutrons in equilibrium, slightly favoring protons due to their lower mass mn −mp = 1.293
MeV. The formation of composite nuclei is dominated by two body collisions at the BBN
temperature scale, and hence deuterium 2H is the first step in the chain of nuclear reactions.
The binding energy of deuterium ED = 2.224 MeV is too low for it to be stable until
the universe cools down to T . 0.1MeV. This is due to the high photon number density
nb/nγ = η10 · 10−10, which allows a significant population in the high energy tail of the
distribution. When the temperature is low enough, the available neutrons combine with
protons to form deuterium, and most of it is quickly processed into heavier elements, with a
major amount ending in the form of 4He.

The predicted abundances can be compared with observations in low metallicity sys-
tems, which have not been significantly affected by stellar nucleosynthesis. The measured
abundances can be used to determine certain cosmological parameters and allow the de-
termination of the baryon to photon ratio independently of the CMB. Deuterium and 4He
measurements agree well with expectations, but 7Li observations lie a factor 3-4 below the
BBN+WMAP prediction, a mismatch known as the “cosmic lithium problem” [20, 112, 113].
BBN is also sensitive to the expansion rate at early times and can be therefore be used to
constraint the number of relativistic degrees of freedom Neff [20] as well as non-standard sce-
narios, such as a possible time variation of the Newton’s constant [114], the amount of early
dark energy [115], heavy particle decays or the variation of fundamental couplings [116, 117].

2.3 Cosmic Microwave Background Radiation

Similarly to the formation of the first nuclei, no neutral atoms can form in the early universe
until the temperature is sufficiently low. The electromagnetic interacting species are tightly
coupled and perturbations propagate in the baryon-photon plasma as sound waves . Neutral
hydrogen starts forming when the temperature drops below T . 1 eV and the universe starts
becoming transparent as light is able to travel without encountering charged particles. This
epoch is called recombination and occurred at z ≈ 1090. The photons emitted then have
redshifted and diluted since recombination and can be seen today in the form of a Cosmic
Microwave Background (CMB) with an average temperature ≈ 2.73 K. Several experiments
have measured anisotropies of the CMB radiation, whose study is very useful to constraint
cosmological models.

The line of sight integration method provides a very direct way to study the physical
effects behind the CMB anisotropies [118]. For a spatially flat universe and adopting the
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conformal Newtonian gauge (2.3), the linear temperature anisotropy Θ ≡ δT/T due to the
Fourier mode k and projected on the multipole l today can be written as

Θ
(s)
l (k, τ0) =

∫ τ0

0
dτS

(s)
T (k, τ)jl(k(τ0 − τ)) , (2.5)

where µ ≡ n̂ · ~k/|k|. The integrand is a convolution of the l-th spherical Bessel function jl
and the scalar sources

S
(s)
T (k, τ) ≡ g

(
Θ0 + Φ +

v̇b
k

+
Π

4
+

3Π

4k2

)
+ e−κ

(
Φ̇ + Ψ̇

)
+ ġ

(
vb
k

+
3Π̇

4k2

)
+

3g̈Π

4k2
. (2.6)

Here dots denote derivatives wrt conformal time τ , κ(τ) =
∫ τ0
τ neσTadτ

′ is the optical depth
(determined from the free electron fraction ne and the Thompson scattering cross section σT )
and g ≡ −κ̇e−κ is the visibility function.3 In addition to the gravitational potentials Φ,Ψ,
the sources include the temperature monopole, the baryon velocity vb and the polarization
tensor Π, all of them depending on τ and k. Besides simplifying the computation, the line of
sight approach allows the identification of different contributions to the total anisotropy. The
terms proportional to the visibility function (which peaks around the recombination epoch)
are known as primary anisotropies, since they are imprinted at z ∼ 1090 when the photons
decouple:

• Primary monopole Θ0. The anisotropy is proportional to the local photon energy
density fluctuation at the last scattering surface.

• Sachs-Wolfe effect Φ. Photons are redshifted as they climb up the initial potential wells
when they are emitted.

• Dopler shift induced by baryon velocity vb, v̇b.

• Polarization effects Π, Π̇, Π̈. Although these effects are typically small, they are neces-
sary for an accurate description of the anisotropies.

The term proportional to e−κ is active since last scattering. This gives rise to a secondary
contribution

• Integrated Sachs-Wolfe (ISW) effect Φ̇ + Ψ̇. This term represents how the photons
traveling from the last scattering surface are affected by the potential wells they en-
counter. If the potential wells were static, the blueshift gained when entering would be
compensated by the redshift necessary to escape. But if the potentials are evolving in
time, there is a net contribution on the temperature anisotropy.

Gravitational lensing of the CMB provides an additional secondary contribution to the tem-
perature fluctuation [119, 120]. However, lensing effects require a bending of the photon
trajectories due to inhomogeneities, which are already an linear effect. Hence they constitute
a higher order correction to (2.6).

3There is also an equation for the polarization spectrum, featuring different sources. However, dark energy
models do not typically affect the CMB polarization, unless there is some specific coupling to photons.
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The angular power spectrum is obtained by the convolution of the temperature anisotropy
(2.5) with the initial power spectrum of the metric perturbation

C
(s)
l = (4π)2

∫
dkk2PΦ(k)

∣∣∣Θ(s)
l (k, τ0)

∣∣∣2 . (2.7)

Here PΦ(k) is defined for the potential in an analogous way to the matter power spectrum
presented below (2.17). Similar expressions exist for the polarization and the tensor sources.
To compare with observations, it is useful to project the observed temperature anisotropy
into spherical harmonics

Θobs(n̂) =
∞∑
l=0

l∑
m=−l

almYlm(n̂) , (2.8)

so that the coefficients alm encode the dependence on the direction of observation n̂. In a
statistically isotropic universe the mean vanishes 〈alm〉 = 0. If the distribution is Gaussian,
it is fully characterized by the variance

〈almal′m′〉 = C
(obs)
l δll′δmm′ (2.9)

The obtained value of C
(obs)
l is the quantity to be compared against equation (2.7). It is

possible to compute non-Gaussian correlations (e.g. 〈al1m1al2m2al3m3〉), an information that
can be related to the primordial non-Gaussianity induced by inflation and has been bounded
by CMB experiments [19, 121].

One of the greatest advantages of the CMB anisotropies is that they can be computed
for any cosmological model, provided that there is a reliable linear perturbation theory. Many
dark energy models only modify the late time physics substantially, leading to an even simpler
implementation. In this cases, the most significant departures come from the low-l end of
the spectrum, for which there are less projections m to obtain the angular power spectrum
(2.9). Therefore, the CMB is mostly useful to detect significant departures at late times (e.g.
the ISW effect), but is limited when it comes to precision measurements of the low redshift
dynamics behind cosmic acceleration. Pre-recombination effects such as the presence of early
dark energy are still tightly bound by the CMB measurements [122].

2.3.1 CMB Distance Priors

Understanding the CMB physics requires considering the dynamics of the perturbations
all the way since the early universe. However, the reason behind the acoustic oscillations
that gave rise to the peaks is simple and can be understood in geometric terms. Initial
perturbations in the baryon-photon fluid propagate a finite distance until the recombination
epoch in which photons decouple. The total length traveled by a sound wave depends on the

speed of sound cs = 1√
3

(
1 + 3ρb

4ργ

)−1/2
. It is known as the sound horizon

rs(z∗) =

∫ (1+z∗)−1

0

cs(a)

a2H(a)
da . (2.10)

The recombination redshift z∗ can be calculated using fitting formulae [123] or the full back-
ground history, which is recommendable in non-standard cases (e.g. in the presence of early
dark energy). The sound horizon is a coordinate distance. To obtain the physical, measurable
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distance, it is necessary to multiply by the scale factor at the time of interest a(t) = 1/(1+z∗).
Comparing the physical sound horizon at recombination with the angular diameter distance
allows one to define the CMB acoustic scale

lA = (1 + z∗)
πDA(z∗)

rs(z∗)
, (2.11)

which is inversely proportional to the angle subtended by the sound horizon observed today
θ∗. The acoustic scale is a good observable, in the sense that it can be easily defined in any
statistically isotropic or spherically symmetric cosmology.

In certain situations it is useful to compare dark energy models against a reduced
set of parameters instead of the full angular power spectrum. This allows one to include
information from the CMB in the analysis without computing cosmological perturbations.
One possibility is then to use the WMAP distance priors lA, z∗, R [19] where in addition to
the already described quantities the shift parameter is defined as

R =
√

ΩmH2
0 (1 + z∗)DA(z∗) . (2.12)

The use of these parameters is valid for FRW models containing matter, radiation, curva-
ture, dark energy, three neutrinos with minimal mass, and standard initial conditions. Its
use is convenient when the model does not affect the clustering of matter significantly (e.g.
quintessence) or the equations for the perturbations are not well known (e.g. phenomenologi-
cal modifications of the Friedmann equations). On the other hand, it misses important effects
that may occur in modified gravity and the values of z∗, R can not be used to constraint inho-
mogeneous models.4 The shift parameter R is also difficult to interpret in models where the
evolution of matter is non-standard (e.g. coupled quintessence). A more model-independent
approach to geometric CMB analysis that is valid for inhomogeneous cosmologies can be
found in reference [124].

2.4 Large Scale Structure

The gravitational pull exerted by inhomogeneities is responsible for the growth of cosmic large
scale structures. An overdense region attracts the matter around it, which in turn enhances
the gravitational attraction on its surroundings. By the action of gravitational instability, the
matter is always transfered from the underdense to the overdense regions, and the initially
quasi-homogeneous universe becomes populated by collapsed non-linear objects and empty
regions (voids). The Hubble expansion acts as a friction term and inhibits the growth of
perturbation modes which are larger than the Hubble radius at any given time. Therefore,
smaller perturbations start growing earlier.

The clustering on cosmological scales is dominated by the dark matter component with
zero pressure. In the hydrodynamic limit, it follows the Euler and continuity equation [125]

δ̇m(~x, τ) +∇ · [(1 + δm(~x, τ))~u(~x, τ)] = 0 , (2.13)

~̇u(~x, τ) +H(τ)~u(~x, τ) + ~u(~x, τ) · ∇~u(~x, τ) +∇ΦN (~x, τ) = 0 , (2.14)

4A method to use simplified CMB constraints in inhomogeneous models is explained in Section 3.3.1.
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where u(~x, τ) is the velocity, H(τ) ≡ a−1da/dτ is the conformal Hubble rate and δm is
defined as in (2.4) . On sub-Hubble scales the Newtonian potential ΦN is given by the
Poisson equation

∇2ΦN (~x, τ) = 4πGρm(τ)δ(~x, τ) . (2.15)

Equations (2.13,2.14) are both non-linear. Their general study requires sophisticated tech-
niques such as renormalized perturbation theory, halo model or N-body simulations [126–128].
For linear perturbations δ, ~u� 1 on sub-Hubble scales and assuming zero vorticity ∇×~u = 0,
the above equations can be written in Fourier space as a single, second order equation

δ̈m(k) + 2H(τ)δ̇m(k) = 4πGρ(τ) δm(k) . (2.16)

The density contrast δm(~k) can be computed for a given cosmological model using
perturbation theory. Similarly to the CMB, it is necessary to define statistical quantities
in order to compare theoretical predictions and observations. The matter distribution is
characterized by the power spectrum

〈δ(~k) δ(~k′)〉 = (2π)3Pδ(k) δ(3)(~k − ~k′) , (2.17)

where δ(~k) is the Fourier transform of the density contrast (2.4).5 The use of the above
power spectrum to compare with observations is common. However, projecting the observed
redshifts and angular locations of galaxies into physical coordinates ~x (which is necessary to
Fourier transform) requires the assumption of a fiducial cosmology.

A model independent approach based on the use of directly measurable quantities was
proposed recently[129, 130]. Instead of real or Fourier space, the density contrast is computed
as a function of the redshift z and the direction of observation n̂

δz(n̂, z) ≡
ρ(n̂, z)

〈ρ〉(z)
− 1 =

N(n̂, z)

〈N〉(z)
+
V (n̂, z)

V (z)
. (2.18)

As a consequence of their observable nature, all the terms in the above equation are them-
selves gauge invariant. In order to compare with observations, (2.18) can be projected into

an angular power spectrum C
(δ)
l (z,∆z) for different redshift separations or smearing, and

the same procedure can be applied to the data. This is analogous to CMB analysis, except
that LSS surveys are three dimensional and have the additional redshift dependence. The
study of different angular multipoles and redshift separations allows one to disentangle the
different effects contributing to δz. The disadvantage of this method is the finite amount
of statistics available for each possible correlation. In practice, current surveys take best
statistical advantage by condensing all the information in a Fourier power spectrum (2.17)
for different redshift slices, although that introduces a spurious, model dependent (θ, n̂)→ ~x
conversion in the analysis.

Galaxy surveys measure galaxies, not the underlying matter density. A galaxy is a
very non-linear object, whose formation and evolution depend on its environment in a very
complex way. Therefore, galaxies are biased tracers of the underlying matter distribution,
i.e. their density contrast is such that

δg ≈ bgδm + bg(2)δ
2
m + · · · (2.19)

5One can also consider higher order statistics, e.g. 〈δδδ〉, which may be sourced by non-linear gravitational
clustering or be related to primordial non-Gaussianity [121].
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where the galaxy bias coefficients can in principle depend on time, scale and galaxy type.
Non-linear terms have been included schematically. Although they will not be considered
further, realistic bias models should include some non-linear part to distinguish overdense
and under-dense regions. Another observational effect is caused by the peculiar velocities
of galaxies, which affects the cosmological redshift in a systematic way - galaxies moving
towards an overdense cosmic structure will appear redshifted if they are in front of it (wrt
the observer) and blueshifted if they are behind. This makes a spherical distribution in real
space (e.g. a cluster of galaxies) look squeezed when observed by a survey in (z, n̂), an effect
known as Redshift Space Distortions (RSD). Taking linear galaxy bias and RSD into account
allows one to relate the galaxy and matter power spectra [131]

Pg(k, µ) = (bg + fµ2)2Pδ(k) , (2.20)

where µ = n̂ ·~k/|k| is the angle between the Fourier mode and the line of sight direction and

f ≡ d log δ(a)

d log a
≡ Ωm(a)γ(a) , (2.21)

is the growth factor. The second equality defines an useful parameterization in terms of the
growth index γ(a), that encapsulates the effect of the background matter on the clustering.
Its value is very close to a constant and equal to 6/11 in ΛCDM universes, while modified
gravity models predict different values. Equation (2.20) can be used to determine f from
the angular dependence of the galaxy power spectrum. A compilation of growth factor
observational data and the predictions can be found in reference [132].

Non-standard cosmological models can affect considerably the formation of structure.
Theories of modified gravity typically incorporate an additional interaction that increases the
force and enhances gravitational instability. In certain cases, the growth factor (2.21) might
acquire an additional scale dependence at the linear level [133]. Models in which dark energy
couples to dark matte do induce an additional bias between the dominant matter component
and the baryons. These features are explored in Section 6.4.2 for the case of disformally
coupled scalar fields.

The case of inhomogeneous cosmologies has been considerably less explored due to the
technical difficulties it poses. These include the lack of a decomposition of linear perturbations
into scalar, vector and tensor, together with the need to solve partial differential equations
depending on (r, t) insted of ordinary ones [134]. Numerical studies of the growth of structure
in LTB spacetimes have been performed using non-linear numerical simulations [135, 136]
and linear perturbation theory [137]. Some consequences of these studies are described in
Section 3.2.2.

2.4.1 The Baryon Acoustic Oscillation Scale

The large scale distribution of matter also reflects the propagation of perturbations in baryon-
photon fluid before recombination as a sequence of oscillations superimposed on the power
spectrum. Equivalently, it can be seen as a peak in the two point correlation function,
which is related to the power spectrum by a Fourier transform. The BAO scale provides
a statistical standard ruler that allows one to reconstruct the expansion history of the low
redshift universe using information from galaxy surveys. As the BAO signal is suppressed by
the baryon to matter ratio, its determination requires large survey volumes in order to gain
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statistical significance. Although it has the same origin as the CMB angular scale (2.10), the
LSS-BAO scale is fixed by the sound horizon at the drag epoch td, which is the time in which
the baryons decouple [138]. The high photon to baryon ratio keeps the latter coupled longer,
and hence the drag redshift zd is lower than the recombination one z∗.

The BAO scale is intrinsically three dimensional (like any other LSS quantity and unlike
the CMB), and can be measured at different redshifts. Thus, it is possible to observe it
parallel to the line of sight (radial BAO) through the correlation in redshift, in addition to the
angular correlation (angular BAO). The comparison between the theoretical and predicted
BAO scales is presented in detail in Section 3.2 for LTB models, in which new effects arise
due to the inhomogeneity. The relevant equations for the projected BAO length in angle and
redshift (3.37, 3.40) can be straightforwardly applied to a homogeneous cosmology

θBAO =
rs(zd)

(1 + z)DA(z)
. (2.22)

∆zBAO = H(z)rs(zd) (2.23)

In order to gain statistical significance, the BAO scale is usually obtained from the raw
data by projecting it into spatial coordinates (assuming a fiducial model) instead of using a
model independent extraction in the variables z, n̂ (2.18).6 Due to historical reasons and the
impossibility to disentangle the different directions after the projection, it is customary to
quote the data in terms of the geometric mean of the angular and redshift correlation

dz ≡
(
θ2
BAO

∆zBAO
z

)1/3

=
rs(zd)

((1 + z)2DA(z)2 z H(z)−1)1/3
. (2.24)

The denominator in the second equality is known as the geometric mean distance DV . The
angular correlation is squared to account for the two dimensions in the solid angle. Similarly
to the product of the correlation in the different distances, it is possible to consider the ratio
of the characteristic scales as seen in redshift and angular space. The process of determining
whether the δz, θ fulfill the geometric relationships predicted by the FRW metric is called an
Alcock-Paczynski test. Section 3.2.5 describes it briefly in the context of LTB universes.

Dynamical Effects

The BAO scale is a paradigmatic example of a geometric cosmological probe. The charac-
teristic length remains constant in coordinate space and tracks the background expansion to
a very good approximation, since dynamical effects depend on the density variations within
∼ 150 Mpc spheres and the universe is very well described by linear perturbation theory on
such large scales. In ΛCDM the BAO scale is constant in coordinate space due to the lack
of scale dependence of subhorizon perturbations δk(t) = D(t)δk(t0) (2.16) up to non-linear
effects. This preserves the shape of the power spectrum and the two point correlation func-
tion, hence making BAO a geometric probe. The first dynamical effects enter non-linearly,
broadening the shape of the peak and systematically reducing the BAO scale at the sub
percent level [142–146]. Other systematics degenerate with BAO evolution might be caused
by scale dependent bias or non-gaussian effects.

6This was necessary when the data was scarce. Current galaxy surveys allow for independent determina-
tions of the angular [139] and radial [140, 141] BAO scales
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6dF SDSS WiggleZ Carnero et al.

z 0.106 0.2 0.35 0.44 0.6 0.73 z 0.55

dz 0.336 0.1905 0.1097 0.0916 0.0726 0.0592 θBAO 3.90◦

∆dz 0.015 0.0061 0.0036 0.0071 0.0034 0.0032 ∆θBAO 0.38◦

C−1
ij =



4444 0. 0. 0. 0. 0.
0. 30318 −17312 0. 0. 0.
0. −17312 87046 0. 0. 0.
0. 0. 0. 23857 −22747 10586
0. 0. 0. −22747 128729 −59907
0. 0. 0. 10586 −59907 125536

 . (2.25)

Table 2.2: BAO data. The first six data points are volume averaged and correspond to
Table 3 of [103]. Their inverse covariance Matrix is given by (2.25), and was obtained from
the covariance data in reference [103] in terms of dz. The last point corresponds to an angular
measurement given in [139].

The evolution of the BAO scale has received considerably less attention in the case
of non-standard cosmologies.7 Sherwin and Zaldarriaga [146] argue that the BAO shift is
an intrinsically non-linear effect, as combines the fact that overdense regions expand less
and contribute more to the two-point correlation function. However, linear perturbations
becomes scale dependent in many alternative theories of gravity δk(t) = D(t, k)δk(t0), and
dynamical effects may occur within this approximation. Theories featuring additional forces
acting on distances ∼ 150 Mpc (e.g. Vainshtein screened models) might enhance the shift of
the BAO scale with respect to the standard model.

Current BAO Data

The current BAO data span the redshift interval 0 − 0.8. The dz data at lower redshift
obtained by SDSS and 6DFGS [101, 147, 148] is complemented with the points provided by
the WiggleZ collaboration [103]. An additional point obtained from SDSS DR7 catalog in the
range [0.5− 0.6] has been extracted as a purely angular correlation [139]. It is independent
of the other SDSS measurements at z = 0.2, 0.35. All dz data points are summarized in
Table 3 of reference [103]. However, the inverse covariance matrix for the data is provided in
terms of the variable A(z), which can not be interpreted easily in non-standard cosmologies,
as discussed in Section 1.2.1. In order to retain the covariances between the different data
points and analyze the models in terms of a meaningful variable, the inverse covariance matrix
was obtained in terms of dz using the correlation matrix. The data are summarized in Table
2.2, and can be also seen in Figure 3.5 compared to several homogeneous and inhomogeneous
models.

7The discussion here is restricted to the case of modified gravity models. The geometric status of BAO
measurements in inhomogeneous cosmologies is discussed in Sections 3.2.1 and 3.2.2.
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The likelihood is assumed to be Gaussian and given by

χ2
BAO =

∑
i,j

(di − d(zi))C
−1
ij (dj − d(zj)) +

(θBAO(0.55)− θ0.55
BAO)2

∆θ2
BAO

, (2.26)

where the indices i, j are in growing order in z, as in Table 2.2.
The choice of data is convenient because it covers the redshift range z ≤ 0.8 with a

regular spacing and the correlations are known (2.25). Other available BAO scale determi-
nations (e.g. references [100, 102, 149–151]) would add points at intermediate redshifts with
similar error bars and unknown covariances, and therefore we expect they will not increase
the precision of the constraints. Determinations of the radial BAO scale [140, 141] are par-
ticularly interesting to constrain inhomogeneous models [152, 153] due to the distinct radial
rescaling factor (3.35), see Section 3.2.4. Nonetheless, they are not included here due to the
lack of knowledge about the correlations with other data points.

2.4.2 Other LSS Probes

The previous description has introduced some possible ways to use Large Scale Structure
to study cosmology. However, there are other probes that test the dynamical properties of
cosmological models, including weak gravitational lensing and galaxy cluster counts.

Weak Gravitational Lensing

One of the consequences of general relativity is the deflection of light by matter. The tra-
jectories of photons traveling over cosmological distances are affected by the intermediate
matter distribution, which acts similarly to a lens in geometric optics. It produces a change
in the perceived size (magnification) and shape (shear) of background objects.8 Magnifica-
tion is difficult to use as a cosmological probe, because it requires knowing the intrinsic size
of the objects under study with significant precision.

Observing the correlations of shapes within a background set of galaxies allows one to
reconstruct the intermediate density distribution. It is then possible to define a shear power
spectrum analogous to (2.17). Unlike galaxy surveys, this method is directly sensitive to
the total matter density, and therefore overcomes the difficulties of galaxy bias. Its direct
dependence on the gravitational potentials is also very valuable to test theories of modified
gravity, for which the Poisson equation (2.15) may be altered [154]. However, systematic
effects are important and technically very challenging. These include the difficulties in the
shape measurement of the galaxies and the existence of intrinsic alignments between them.

Clusters of Galaxies

Clusters of galaxies form out of the high density fluctuations present in the early times
perturbations, and their abundance at a given redshfit can be used to constraint cosmological
models [155]. Cluster abundance studies rely on the comparison between the predicted space
density of massive halos to the observed space density of clusters, which can be identified
via optical, X-ray, or CMB observables that should correlate with halo mass. Their number
density is sensitive to a combination of the perturbation normalizations and the matter

8Some systems produce strong gravitational lensing effects, such as the occurrence of multiple images of a
given source. Cosmological constraints usually rely on more subtle modifications (weak lensing), which can
be studied statistically over large survey volumes.
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energy density, and this dependence can be used to constraint cosmological parameters. As
their formation depends on the dynamics of structure formation, they can be used to probe
alternative theories of gravity. However, clusters are non-linear objects and their use as
cosmological probes in non-standard scenarios is challenging.

Besides galaxies and Dark Matter haloes, clusters of galaxies also contain a large amount
of very hot, ionized gas. This gas affects the energy distribution of the CMB photons by
inverse Compton scattering processes (energy transfer from an electron to a photon), an
effect known as the thermal Sunyaev-Zel’dovich effect. Clusters can indeed be detected by
distortions in the photon spectrum induced in the CMB. The relative motion of the cluster
w.r.t. the CMB rest frame affects the magnitude of this effect, a contribution known as the
kinematic Sunyaev-Zel’dovich (kSZ) effect. The kSZ effect induced by the relative motion
is also produced in any other situation in which the CMB is not isotropic in the cluster
reference frame. This property allows one to use bounds on the kSZ effect to probe the large
scale homogeneity of the universe [36, 156].

2.5 Type Ia Supernovae

The Type Ia supernovae (SNe) are extremely intense explosions that can be observed up to
high redshift z ∼ 1.5. They are believed to occur when the mass of a white dwarf surpasses
the Chandrasekhar limit, either because of matter accretion or through merging with a
companion star. At this point the electron degeneracy pressure is not able to compensate
the gravitational instability, leading to a collapse and subsequent explosion as the nuclear
degeneracy pressure is reached. The existence of this triggering mechanism sets the common
energy scale, which can be sharpened through a phenomenological calibration procedure.
The corrected SNe luminosity converts them into reliable standard candles, which can be
used to measure cosmological distances as a function of redshift.

The dimming of distant supernovae constitutes a solid probe of dark energy models in
the interval 0.01 . z . 1.5. The difference in magnitude between each observed supernovae
at redshift zi and the theoretical expectation given by (2.1) is

µth(zi)− µobs
i = 5 log10

(
DL(zi)

1Mpc

)
+ 25− µ0 − µobs

i ≡ ∆µi − µ0 , (2.27)

where the last equality defines the quantity ∆µi, used for the observational constraints. The
quantity µ0 is proportional to the intrinsic luminosity of the supernova explosions. Since
its value is unknown theoretically, it will be allowed to take arbitrary values. Observational
determinations of µ0 will be used to constrain the local expansion rate, as will be described
in Section 2.5.1.

In addition to the intrinsic luminosity, two other unknown quantities are necessary
to calibrate the supernovae measurements and obtain a standard candle. These are the
stretch (the duration of the supernovae explosion) and the color (to account for dust ex-
tinction), which are assumed to be universal and introduce linear corrections on all the
SNe µobs

i = µB,i − µ0 + α(si − 1)− βci. These factors are calibrated by assuming an FRW-
ΛCDM model, and should in principle be allowed to vary if the cosmology changes [157, 158].
However, the result of the analysis should not vary significantly in models which produce lu-
minosity distance curves very similar to the standard model. Considering the covariance
matrix between the supernova data should also be beneficial, since it adds information about
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this calibration procedure by taking into account the covariance between supernovae with
similar color and stretch. Of course, the case would be different in more radical cases, e.g. if
the luminosity distance has features or sudden variations.

Supernova are a geometric probe to a very good approximation, granting very direct
information on the luminosity distance (2.2). However, there are two ways in which cosmology
may affect the SNe distance determinations dynamically:

• Lensing of SNe light induced by cosmic structures, which can induce a systematic
magnification. Although lensing is included into the budget of known errors, it is done
in a simplified and not completely model independent way [27, 159]. Similarly, SNe
redshift determinations are affected by peculiar velocities.

• SNe evolution. If supernovae that originated in older galaxies are intrinsically fainter
(or brighter) than their younger counterparts in a way not corrected by stretch and
color, then the cosmological parameter estimate would be biased.9

Fortunately, spectroscopic analyses show that the supernovae properties have little depen-
dence on their age. These and other systematic uncertainties involved in the use of SNe as
cosmological probes have been extensively studied, and the modern wealth and quality of
data allow for a consistent study of this systematic error sources and a variety of cross checks
that validate their use as standard candles [10, 160–162]. Furthermore, the use of comple-
mentary probes (e.g. BAO distance determinations) is able to rule out the models that rely
on variable supernovae properties or direct effects on propagating light (e.g. axion-photon
mixing).

Current Supernovae Data

Most of the observational constraints presented in the following chapters employ the Union2
supernovae compilation [163], which consists in 557 SNe redshift-magnitude measurements
after corrections for color and shape. The likelihood is computed using the covariance matrix
including systematic errors Cij

− 2 logLSNe = χ2
SNe =

∑
i,j

(∆µi − µ0)C−1
ij (∆µj − µ0) . (2.28)

This result depends on the actual value of the intrinsic luminosity µ0. Since it is unknown,
the likelihood has to be maximized for each model with respect to µ0 for each model under
consideration [162]. Expanding the above expression and substituting back the value of µ0

such that ∂(χ2)/∂µ0 = 0, gives the optimal likelihood for each model

χ2
SNe =

∑
i,j

∆µiC
−1
ij ∆µj −

(∑
i,j C

−1
ij ∆µj

)2

∑
i,j C

−1
ij

. (2.29)

The Union2 SNe dataset can be seen in Figure 3.4 compared with both homogeneous and
inhomogeneous models.

9That might happen if different processes producing type Ia SNe (merging vs accretion) occur at different
rates depending on the age of the universe. More exotic cases (e.g. time variation of G or other fundamental
constants) might involve a variation of the Chandrasekhar mass Mc ∼M3

p/m
2
H ∝ G−3/2.

36



2.6. Local Gravity Tests

2.5.1 Local Expansion Rate

Recasting the expression for the luminosity distance (2.27) in units of H0

µth(zi) = 5 log10 (H0DL(zi)) + 25− µ0 − 5 log10(H0[Mpc−1]) . (2.30)

it is possible to see that the intrinsic luminosity µ0 is degenerate with the Hubble constant
for homogeneous models, for which cosmic distances (2.1, 2.2) only depend on it through
a global H−1

0 factor. On the other hand, inhomogeneous cosmologies introduce additional
scales and allow for more involved dependences [164], and hence the determination of the
local expansion rate requires the knowledge of the intrinsic supernovae luminosity. Since the
dependence of the expansion rate with redshift in an arbitrary cosmology can be different
than in the ΛCDM case (even for low redshifts z < 0.1) it is necessary to devise a model
independent method.

A recent measurement of the local expansion rate using Ia type supernovae yields a
value H0 = 73.8± 2.4kms−1Mpc−1 [165]. The supernovae intrinsic luminosity was measured
using over 600 Cepheid stars from eight nearby galaxies in which type Ia supernovae have
been observed. The Cepheids are calibrated comparing their luminosity to three different
distance estimates: 1) the geometric distance to NGC 4258 as obtained from water masers
orbiting its central black hole, 2) trigonometric paralaxes to Cepheid stars in the Milky Way
and 3) relating the distance to the Large Magellanic Cloud obtained from eclipsing binaries.
The local expansion rate is obtained by finding the best fit for a fiducial FRW model with
ΩM = 0.3, ΩΛ = 0.7 to 253 low redshift type Ia supernovae (z < 0.1) using the measured
intrinsic luminosities. In particular, the quoted value of H0 is the average of the values
obtained from the three different calibrations.

In order to reproduce the method outlined above and provide a fair comparison in an
arbitrary cosmology, the constraints on the model are implemented through the supernovae
luminosities rather than the model parameter Hin. The value and the error in the luminosity
were obtained by comparing the fiducial model fixing H0 = 73.8 and 73.8±2.4 to the Union2
data in the range z < 0.1 (195 SNe) and finding the value of µobs

0 that gives the best fit,
using equation (2.32) below. The result is

µobs
0 = −0.120± 0.071 . (2.31)

The “predicted” intrinsic luminosity that can be compared to the observation is the best fit
µ0 found using the Union2 data for the model under investigation

µbf
0 =

∑
i,j C

−1
ij ∆µj∑

i,j C
−1
ij

, (2.32)

using the distance modulus and the inverse covariance matrix of the data (see previous Section
and equations (2.27,2.28). The associated likelihood is assumed to be Gaussian

χ2
H0

=
(µbf

0 − µobs
0 )2

∆µ0
2

. (2.33)

2.6 Local Gravity Tests

Besides its elegant description of gravity as the dynamics of the space-time geometry, the
major strength of General Relativity is to correctly predict a variety of phenomena that occur
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in the Solar System and other astrophysical systems at low redshift [110]. Although not truly
cosmological probes, local tests of gravity are very useful to constrain departures from GR
such as additional scalar forces.

Classical gravity tests may involve null or time-like geodesics, which allow the explo-
ration of different properties. The perihelion precession of Mercury and the precise Lunar
laser ranging measurements of the Earth-Moon system are two examples involving massive
bodies. Tests based on the trajectory of null geodesics include the gravitational redshift,
the deflection of light (including gravitational lensing) and the time delay of a signal passing
near the Sun. Laboratory tests of gravity can explore the existence of short range interac-
tions, e.g. of the Yukawa type (1.35), using torsion pendulum experiments. Current bounds
limit their coupling strength on scales larger than 0.056 mm [166]. These measurements can
achieve the precision necessary to detect small field effects due to the good control of sys-
tematic effects and the possibility of collecting considerable statistics. Gravity has also been
tested in the strong field regime outside the Solar System, through the observation of binary
pulsars (i.e., rotating neutron stars emitting a beam of radio noise). Several systems have
been observed in which the orbital period decreases according to the energy emitted in the
form of gravitational waves, in great agreement with the General Relativistic expectation.

Many of the aforementioned tests have the advantage of being able to directly translate
in to bounds of the Parameterized Post Newtonian (PPN) approximation coefficients [110].
The theoretical values can also be computed within alternative theories of gravity in terms
of the model parameters, allowing a very neat and direct comparison between theory and
experiments. For recent review on gravitational experiments and current bounds on PPN
parameters, see Ref. [20].
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Chapter 3

Large Scale Homogeneity and
Non-Copernican Void Models

There is nothing more natural than to
consider everything as starting from oneself,
chosen as the center of the world; one finds
oneself thus capable of condemning the world
without even wanting to hear its deceitful
chatter.

Guy Debord1

R
ecent years have witnessed enormous advance in the quantitative under-
standing of cosmology and the establishment of a Standard Cosmological
Model. Its construction is grounded on the general relativistic description
of space-time with the usual Einstein equations. The Ansatz for the space-
time is a spatially homogeneous and isotropic Friedmann-Robertson-Walker
(FRW) metric, chosen to satisfy the generalized Copernican Principle, or

Cosmological Principle. In addition to the known particles (baryons, photons and neutri-
nos), two mysterious elements need to be added in order to account for all the observations.
These give the name to the standard, ΛCDM model: Cold Dark Matter (CDM) plus a cos-
mological constant (Λ), the last one necessary to explain the dimming of distant supernovae
[11, 12]. With the standard choice of the metric, the supernovae data imply that the universe
is currently undergoing a phase of accelerated expansion.

The situation changes when the Cosmological Principle Hypothesis is dropped. As the
supernovae we observe occur in our past lightcone, the changes in luminosity we interpret as
time evolution might be due to spatial variations if the universe is not homogeneous. If the
inhomogeneity represents an underdensity with a size comparable to the Hubble radius and
our galaxy is located near its center, supernovae observations can be successfully accounted

1Panegyric (1989)
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for without the introduction of new physics. This type of so-called “large void models”
can be described by a spherically symmetric Lemâıtre-Tolman-Bondi (LTB) metric, and
have been studied as an alternative to the standard ΛCDM scenario [38, 40, 157, 167–181].
Many different aspect of these alternative models have been considered over the past years,
including observational constraints [27, 36, 152, 153, 156, 158, 164, 182–192], the growth
of perturbations [134–137, 193, 194], and the physics of the Cosmic Microwave Background
(CMB) [109, 195–204]. See reference [8] for a recent review.

If the time to Big Bang and the baryon-mater ratio are independent of the location,
the LTB type of metric represents the gravitational growth of an adiabatic perturbation
from an initially quasi-homogeneous state [193]. Although a Gigaparsec-sized void is difficult
to reconcile with the standard inflationary paradigm, it might still be possible through the
production of large non-perturbative inhomogeneities associated with the stochastic nature
of the inflaton evolution [205]. The only philosophical problem associated with this type
of models is the requirement of being located very close to the center in order to preserve
the great degree of isotropy observed in the CMB [196], but ultimately, only cosmological
observations can tell us about the geometry and distribution of the cosmos and our position
in it, provided that this question is meaningful.

The aim of this work is to analyze LTB models in the light of the most recent cosmologi-
cal data. The Hubble Space Telescope has made a precise measurement of the local expansion
rate [165] that challenges this type of void models, which typically require a low value to fit
the CMB power spectrum [153, 187]. The determination of the Hubble parameter relies on
the calibration of distant supernovae using Cepheid variable stars and the subsequent fit to
a fiducial ΛCDM model in the low redshift range. Although applying priors directly on H0

is fine for homogeneous cosmologies, LTB universes can have a very different evolution in
the relevant redshift range. Therefore, our analysis is based on the intrinsic Ia supernova
luminosity instead of the value of the Hubble parameter.

Further restrictions on this model are obtained from the scale of Baryon Acoustic Os-
cillations (BAO) and its evolution in an inhomogeneous cosmology by including the most
recent BAO data up to redshift z = 0.8 provided by the WiggleZ collaboration [103] and
Carnero et al. [139]. In a FRW cosmology, the BAO scale is space-independent and the
constraints it yields arise from providing an independent measurement of cosmic distances
relative to a standard ruler, with an initial length determined by the physics of the early
universe. Once baryons decouple, the dominant effect on the observed physical scale is to be
stretched by the expansion of the universe. However, in the less symmetric LTB cosmology
the initially constant BAO scale grows differently: the physical scale acquires an additional
radial dependence and is stretched differently in the longitudinal and transverse direction,
due to the existence of two expansion rates.

Adding information about the BAO scale at higher redshift reduces considerably the
room for its value in the early universe. If the depth of the void is chosen to fit the supernovae
luminosity distances, the inhomogeneous expansion produces a mismatch between the BAO
scale at low and high redshift, posing a new problem for these models. Adding information
of the CMB increases the discrepancies by restricting the initial acoustic scale, but the con-
straints are independent of the particular values, i.e, depend only on the geometric properties
of the model regardless of the calibration of the standard rulers and candles. In particular,
these constraints are independent of the primordial power spectrum, a critical assumption
necessary to rule out large void models using the tension between the CMB and the local
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expansion rate [158] and are therefore complementary to these.

Section 3.1 describes the general LTB void models, giving the corresponding Einstein-
Friedmann equations, as well as the standard solution in absence of pressure. In a subsection
the adiabatic assumption is introduced, i.e. that the time since Big Bang is space indepen-
dent, and thus the model only depends on a single function, the inhomogeneous matter profile
ΩM (r). This is chosen to have the GBH parameterization, which is also presented. Section
3.2 presents in detail the evolution of baryonic features in terms of free-falling trajectories of
the background metric and compute the BAO observables. Section 3.3 describes the cosmo-
logical data used to analyze the model, including a method to use the supernova luminosity
to constrain the local expansion rate. It also contains the results from the comparison of the
model and the data and describe the tensions between the different datasets, as well as the
result of different model comparison criteria. The conclusions are summarized in Section 3.4,
discussing the generality of the results and stating several modifications that might render
the model viable.

3.1 Lemâıtre-Tolman-Bondi Models

The LTB model describes general spherically symmetric space-times and can be used as a
toy model for describing voids in the universe [206–208]. The starting point is the general
metric

ds2 = −dt2 +X2(r, t) dr2 +A2(r, t) dΩ2 , (3.1)

where dΩ2 = dθ2+sin2 θdφ2. Units in which c = 1 will be assumed in the folowing. Assuming
a spherically symmetric matter source with negligible pressure, Tµν = −ρM (r, t) δµ0 δ

0
ν , the

(0, r) component of the Einstein equations, Gtr = 0, sets the form of X(r, t). The resulting
cosmological metric becomes

ds2 = −dt2 +
A′2(r, t)

1− k(r)
dr2 +A2(r, t) dΩ2 , (3.2)

with an arbitrary function k(r) playing the role of the spatial curvature parameter. The
other components of the Einstein equations read [173, 182, 184]

H2
T + 2HTHR +

k(r)

A2
+
k′(r)

AA′
= 8πGρM , (3.3)

2ḢT + 3H2
T +

k(r)

A2
= 0 , (3.4)

where dots and primes denote ∂t and ∂r respectively, and we have defined the transverse (i.e.
in the angular direction) and radial Hubble rates as

HT ≡ Ȧ/A, and HR ≡ Ȧ′/A′ . (3.5)

The reduced Hubble rate can be defined as usual: HR/T ≡ 100hR/TKm/Mpc/s. It is also
useful to consider the normalized shear

ε ≡ HT −HR

HR + 2HT
, (3.6)
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Figure 3.1: Physical parameters in the LTB model. The density contrast at t(z = 0), t(z =
10) (red) shows the evolution from an initially less inhomogeneous state, and differs from
the function ΩM (r) (black dotted). The expansion rates in the radial (purple dashed) and
transverse (blue dashed) directions differ the most where the void is steeper. The profile
shown has R = 2.5,∆R = 1.

i.e. the difference between the radial and transverse expansion weighted by the total expan-
sion [152]. This variable provides a local quanitfication of the departures with respect to
homogeneous cosomologies, e.g. to characterize the growth of structure [136].

Integrating (3.3) yields

H2
T =

F (r)

A3
− k(r)

A2
, (3.7)

in terms of another arbitrary function F (r). Substituting it into the first equation gives

F ′(r)

A′A2(r, t)
= 8πGρM (r, t) , (3.8)

where ρM (r, t) is the physical matter density. Since F (r) is time-independent, one can choose
t = t0 and compute the integrated matter density in a comoving volume today, V = 4πr3/3,
as ρ̄(r) = 1

V

∫ r
0 4πr′2dr′ ρM (r′, t0) , and construct with it the ratio ΩM (r) ≡ ρ̄(r)/ρ̄c(r), where

ρ̄c(r) = 3H2
0 (r)/8πG is the critical density in that volume [152].

The boundary condition functions F (r) and k(r) are specified by the nature of the
inhomogeneities through the local Hubble rate, the integrated mass ratio and the local spatial
curvature,

F (r) = H2
0 (r) ΩM (r)A3

0(r) = 8πG

∫ r

0
dr′r′2ρM (r′, t0) , (3.9)

k(r) = H2
0 (r)

(
ΩM (r)− 1

)
A2

0(r) , (3.10)

where functions with subscripts 0 correspond to present day values, A0(r) ≡ A(r, t0) and
H0(r) ≡ HT (r, t0). With these definitions, the (position dependent) transversal Hubble rate
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3.1. Lemâıtre-Tolman-Bondi Models

can be written as [173, 182]

H2
T (r, t) = H2

0 (r)

[
ΩM (r)

(
A0(r)

A(r, t)

)3

+ (1− ΩM (r))

(
A0(r)

A(r, t)

)2
]
, (3.11)

and we fix the gauge by setting A0(r) = r. For fixed r and ΩM < 0 the above expression is
equivalent to the Friedmann equation, and has an exact parametric solution in terms of the
variable η:

A(r, t) =
ΩM (r)

2[1− ΩM (r)]
[cosh(η)− 1]A0(r) , (3.12)

H0(r)t =
ΩM (r)

2[1− ΩM (r)]3/2
[sinh(η)− η] . (3.13)

Very good approximate solutions can also be found by Taylor expanding around an Einstein
de Sitter solution [184].

In addition to the solution of Einstein Equations (3.12,3.13) it is necessary to obtain
the coordinates on the lightcone as a function of redshift. For light traveling along radial null
geodesics, ds2 = dΩ2 = 0 yields

dt

dr
= ∓ A′(r, t)√

1− k(r)
, (3.14)

which, together with the redshift equation [182, 208],

d log(1 + z)

dr
= ± Ȧ′(r, t)√

1− k(r)
, (3.15)

allows us to write a parametric set of differential equations, with N = log(1 + z) being the
effective number of e-folds before the present time,

dt

dN
= −A

′(r, t)

Ȧ′(r, t)
, (3.16)

dr

dN
= ±

√
1− k(r)

Ȧ′(r, t)
, (3.17)

where the equations are integrated with the initial condition r(0) = 0, t(0) obtained from
(3.12,3.13) for r = 0, A = A0.

The angular diameter distance is given by the dΩ element of the metric evaluated on
the lighctone, and is related to the luminosity distance by the redshift due to photon redshift
and time dilation

DA(z) = A(r(z), t(z)) , (3.18)

DL(z) = (1 + z)2A(r(z), t(z)) . (3.19)

The dynamics of the LTB metric in the only-matter approximation discussed above
are fully specified by the two functions ΩM (r), H0(r) independently of the type of matter
present, as long as it exerts no pressure. But by dropping the symmetries of the FRW model
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a spherically symmetric but inhomogeneous mixture of baryonic and dark matter can be
accommodated. A possible parameterization in terms of the total matter density would be

fb(r) ≡
ρb(r, t)

ρm(r, t)
, (3.20)

where there is no time dependence because the energy density of baryons and dark matter
evolves identically at late times.

Before explaining the choice of matter profile and the physical restrictions on the model,
let us briefly summarize the approximations used throughout this work

• Spherical symmetry as given by (3.2) and perfectly central location of our galaxy at
r = 0, t = t0 as initial conditions for the lightcone integration (3.16).

• Radiation energy and pressure neglected as a source of the expansion (3.11).

• Early time and large radius FRW limit of the model, necessary to compute the BAO
scale (Section 3.2) and the relative locations of the CMB peaks (Section 3.3.1).

• Perturbations of the LTB metric neglected. The evolution of the BAO scale from early
times is studied by analyzing the geodesics of the background metric (3.2) (Section
3.2).

3.1.1 The Adiabatic GBH Model

General LTB models are uniquely specified by the two functions k(r) and F (r) or equivalently
by H0(r) and ΩM (r), but to test them against data it is necessary to parameterize the
functions, so that a finite dimensional space is analyzed. In this Chapter we will use the
GBH model [184] to describe the matter profile in terms of a reduced number of parameters.
In addition to the choice for the free function ΩM (r), we further impose that the time to Big
Bang is space-independent

tBB(r) = H0(r)−1

 1√
ΩK(r)

√
1 +

ΩM (r)

ΩK(r)
− ΩM (r)√

Ω3
K(r)

sinh−1

√
ΩK(r)

ΩM (r)

 = t0 , (3.21)

where ΩK(r) = 1−ΩM (r). The above expression can be obtained from integration of (3.11)
[182, 184] or by solving for A = A0(r) in (3.12,3.13). This condition reduces the functional
freedom associated to H0(r) to a single normalization constant H0, that is related to the
overall age of the universe.

Additionally, we require that there are no large scale baryonic isocurvature modes, i.e.
the baryon fraction (3.20) is constant. This type of voids can be regarded as the gravitational
collapse of a large scale, adiabatic and spherically symmetric perturbation which has a small
amplitude at early times. Its adiabatic nature is related to the fact that there is only one
functional degree of freedom that sets the shape of the remaining free functions (ΩM (r) in
our case, which in turn fixes H0(r) and the baryon fraction).
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3.2. The Baryon Acoustic Scale in LTB Universes

The above conditions give a relation between H0(r), ΩM (r) and fb(r), and hence con-
strain the models to one free function. Our chosen model is thus given by [184]

ΩM (r) = Ωout +
(

Ωin − Ωout

)(1− tanh[(r −R)/2∆R]

1 + tanh[R/2∆R]

)
(3.22)

H0(r) = H0

 1

ΩK(r)
− ΩM (r)√

Ω3
K(r)

sinh−1

√
ΩK(r)

ΩM (r)

 = H0

∞∑
n=0

2[ΩK(r)]n

(2n+ 1)(2n+ 3)
, (3.23)

fb(r) = fb = constant (3.24)

where the second equation follows from (3.21), and the third by demanding constant baryon
to matter ratio. This paremeterization was introduced to lower the shear around the void
wall (e.g. with respect to Gaussian profiles) and allow a unified description of cuspy and flat
central regions [184]. Each void model is specified by the following parameters:

• Ωin: Matter/curvature fraction at the center of the void (equations 3.8-3.10). As deeper
voids produce more fictitious acceleration, this parameter plays a major role in the
constraints presented in Section 3.3.

• Ωout: Asymptotic (r → ∞) matter/curvature fraction in which the inhomogeneous
region is embedded. Two possibilities will be considered separately depending on the
asymptotic curvature of the universe:

-CGBH: Flat Ωout = 1, as suggested by inflationary physics.

-OCGBH: Open Ωout ≤ 1, which allows a better fit to the CMB.

• ∆R: Slope of the inhomogeneity. Smaller values of ∆R produce steeper profiles and
increase the shear (3.6).

• R: Shape of the void. ∆R � R describes an inhomogeneity with a central plateau of
approximately constant density, while ∆R� R produces a cuspy central region.

• H0: Expansion rate normalization that determines the Big Bang time (3.21).

• fb: Baryon fraction over the total matter content. Its value affects the pre-recombination
physics and determines the value of the BAO scale and CMB peak locations.

The choice of the constrained model is important because, in our gauge, void models
with an inhomogenous Big Bang would contain a mixture of growing and decaying modes, and
consequently the void would not disappear at early times, making them incompatible with
the Standard Big Bang scenario [193]. By restricting ourselves to adiabatic LTB models the
central void is reduced to an insignificant perturbation in an otherwise homogeneous universe
described by an FRW metric, both at large distances and early times. This requirement,
together with the condition of constant baryon fraction, ensures the space-independence of
the early BAO scale, which is a key part of the present analysis.

3.2 The Baryon Acoustic Scale in LTB Universes

Inhomogeneous cosmologies stretch the BAO scale differently than their homogeneous cousins.
There are three potential effects to be addressed when computing the BAO scale in LTB mod-
els at the background level:
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Chapter 3: Large Scale Homogeneity and Non-Copernican Void Models

1. Inhomogeneous expansion: The matter distribution will source the expansion of the
universe in a position dependent way. Therefore, there will be a radial dependence of
the physical scale in addition to the time dependence.

2. Anisotropic expansion: In general the expansion rate in the radial and transverse di-
rection will be different HT 6= HR, resulting in two different BAO scales lT 6= lR, as
seen by a central observer. The relation between this effect and the Alcock-Paczynski
test will be discussed in Section 3.2.5.

3. Radial coordinate drift: Displacements in the radial direction are not a symmetry of the
LTB metric and the free-falling baryon features are not ensured to remain at constant
r. In Section 3.2.1 we show that this effect does not occur for timelike geodesics.

Possible effects from higher order corrections will be discussed at the end of Section 3.2.2.
Our approach to predict the BAO scale in LTB models with space-independent Big

Bang time relies on the homogeneity properties of the metric at large radius (i.e. the profile
flattens) and early times (i.e. the Big Bang time and the baryon fraction are independent
of the position). Relaxing this assumptions would require a more careful treatment which
goes beyond the scope of this work. We first analyze the evolution of the BAO scale in
the inhomogeneous cosmology by following the geodesics of the LTB metric (Section 3.2.1).
Afterwards, the asymptotic physical scale computed in the limit r � R, ∆R using the fitting
formulae is extrapolated to a suitable early time te at which the void is just a negligible
perturbation. The obtained value can be then projected to the coordinates of observation
r(z), t(z) using the previous results (Section 3.2.3). Finally, the physical scale is related to
the observed quantity dz quoted by the galaxy surveys (Section 3.2.4). The procedure is
sketched in Figure 3.2.

The derivation we are presenting avoids using certain concepts that might be equivocal
when used for inhomogeneous cosmologies. In particular, we will only use redshift as a
coordinate on the lightcone or in the asymptotic region when the FRW limit can be applied.
We will also avoid the term “comoving” and will refer to “coordinate” instead, as well as pay
special attention to distinguishing physical distances and relative coordinate separations.

3.2.1 Free-falling Scales in the LTB Metric

The propagation of sound waves in the baryon-photon fluid present in the early, expanding,
universe leaves an imprint at a characteristic length that will be observable in the late universe
as a peak in the correlation function of galaxies [24, 138]. When the universe becomes neutral,
baryon-photon interactions become effectively negligible and the baryonic overdensities start
behaving as free-falling test bodies. We can therefore analyze the relative separation of the
initial baryon clumps and the galaxies they will form by following the geodesics of the LTB
metric: xµ(τ) = {t(τ), r(τ), θ(τ), φ(τ)}, where ẋµ = dxµ

dτ . The BAO scale can be traced
simply by following two nearby trajectories with an initial separation equal to the baryon
acoustic scale at a sufficiently early time.

The transverse evolution is the simplest. Since rotations are an isometry of the LTB
metric, the momentum in the angular directions is conserved and trajectories with φ̇, θ̇ = 0
initialy will remain at constant angular coordinates. This can be readily seen from the
geodesic equation for the θ coordinate

θ̈ + 2
A′

A
ṙθ̇ + 2

Ȧ

A
ṫθ̇ = 0 , (3.25)
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Figure 3.2: The LTB model with space-independent Big Bang. Black lines represent
hypersurfaces of constant time t = t(z) for z = 0, 1, 100 (dashed) and constant density
ρ(r, t) = ρ(r∞, t(z)) (thick, continuous). The filled areas show schematically the regions in
which the void can be considered homogeneous (early times and large radii). Red constant
lines represent our lightcone, where the coordinates of SNe (blue circles on the left) and BAO
(green triangles on the right) observations has been added. Vertical dotted lines correspond
to the geodesic worldlines of our galaxy (red) and the BAO fiducial locations (green). The
physical BAO scale at different z is obtained from the asymptotic value (represented by the
filled green triangle), extrapolated to early times, for which the universe is approximately
homogeneous (horizontal green dotted line) and evaluated at the lightcone coordinates using
the LTB metric (see Section 3.2 for the details).

for which θ(τ) = θ0 is a solution. Its stability follows by demanding timelike, slow geodesics
for which ṫ� ṙ and noting that the second term is positive in an expanding universe (Ȧ > 0,
HT > 0) and acts as a friction against the angular velocity θ̇. Therefore, initial angular
separation ∆θ is conserved in coordinate space and the associated, transverse physical scale
can be obtained integrating the angular element of the metric lTphys = A(r, t)∆θ.

Since shifts in the radial direction are not an isometry of the LTB metric, ṙ is not
automatically conserved and the determination of the radial acoustic scale requires a more
careful treatment. The geodesic equations for a trajectory with φ̇, θ̇ = 0 are

ẗ+
A′Ȧ′

1− k(r)
ṙ2 = 0 , (3.26)
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r̈ +

[
k′(r)

2(1− k(r))
+
A′′

A′

]
ṙ2 + 2

Ȧ′

A′
ṫṙ = 0 . (3.27)

Similarly to the angular case, a particle initially at rest at some early time te, ṙ(te) = 0,
will remain at constant radial coordinate location r(τ) = r(te). Timelike, non-relativistic
trajectories with ṫ � ṙ are again stable in an expanding universe due to the longitudinal
Hubble friction term Ȧ′/A′ > 0, and geodesics will remain at constant coordinate separations
at different cosmic epochs.2 The physical distance in the r direction can be obtained simply
by integration using the radial element of the metric lRphys =

∫ √
grrdr ≈ A′/

√
1− k∆r.

To summarize, since coordinate locations are conserved in geodesic evolution, we can
provide the following relation for freely falling, physical scales in the LTB metric at different
times t, te in the transverse and longitudinal directions

lTphys(r, t) =
A(r, t)

A(r, te)
lTphys(r, te) , (3.28)

lRphys(r, t) =
A′(r, t)

A′(r, te)
lRphys(r, te) . (3.29)

3.2.2 BAO Scale Evolution Beyond Zero Order

The above analysis so far has dealt with the differences between homogeneous and inhomo-
geneous models at the zero order level. As it was discussed in Section 2.4.1, the BAO scale
in homogeneous, GR cosmologies is slightly shifted towards lower values due to non-linear
effects on matter clustering. The lack of this effect to linear order is a consequence of the
scale independence of the growth function for each Fourier mode.

In inhomogeneous universes the situation is different, since the lack of symmetry pro-
duces the failure of the perturbation decomposition and the treatment of scalar perturbations
(in the metric and matter density) have to be considered together with vector and tensor
perturbations [134, 193]. The vorticity (vector) component is subdominant because the LTB
metric is rotationally invariant, but the scalar potential is sourced at linear order by a term
proportional to the background shear traced with the tensor perturbations. Fortunately, for
the GBH profiles considered here, the background shear is below 5% and these contributions
will be subdominant with respect to the much larger effect of the inhomogeneous expansion
(see Figure 3.3 and Section 3.2.4). February et al. recently presented the numerical com-
putation of the BAO scale in LTB models within linear theory, and considering only scalar
perturbations [137]. They found a shift on the BAO scale at the percent level, which is
nevertheless considerably smaller than the departures induced by the inhomogeneous and
anisotropic expansion discussed above.

Further support for the assumption of a constant BAO scale in coordinate space is
provided by N-body numerical studies. Alonso et al. [135] run simulations in which inhomo-
geneous matter profiles are implemented through an initial underdensity of Gpc size. Their
results show that the (local) matter density contrast grows with the scale factor in a way
analogous to that of an open universe with a value of the matter density ΩM (r) correspond-
ing to the appropriate location r, showing an effective decoupling between the small scale
clustering and the evolution of the void. Corrections from the large scale inhomogeneity are

2The situation would considerably change if Γrtt was different from zero in the LTB metric. It might be
as well possible to devise profiles for which the first term in (3.27) overcomes the second for sufficiently rapid
geodesics, i.e. high ṙ/ṫ, but this is not the case for the models under study.
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proportional to the local shear weighted by a factor O(1) [136], and are hence small for the
profiles allowed by observations.

3.2.3 The Physical BAO Scale at Early Times and on the Lightcone

The solutions of the LTB metric with space-independent Big Bang represent an inhomogene-
ity that grows due to gravitational instability out of a very homogeneous state. For typical
voids at t(z = 100) the physical density contrast ρm(r, t)/ρm(r∞, t) is of order 1%, while
at t(z = 1000) it shrinks to ∼ 0.1%. As the baryionic features develop between t ∼ 0 and
t ∼ t(z = 1000), it is a good approximation to consider that the physics responsible for
recombination and the origin of the baryon acoustic scale are indistinguishable from their
counterparts in homogeneous cosmologies. It will be therefore assumed that for models with
space-independent Big Bang the physical BAO scale is isotropic and coordinate independent
at early times on constant time hypersurfaces.3

lBAO(r(z), te) ≈ lBAO(r∞, te) . (3.30)

The early time BAO scale can be obtained from the asymptotic value at different times
using equation (3.28) or (3.29). In the r → ∞ limit the universe is indistinguishable from
a FRW cosmology, and we can compute the BAO scale using the fitting formulae provided
by Eisenstein and Hu [138] in terms of the asymptotic values of the matter density and
baryon fraction. These effective values are obtained by projecting the LTB parameters on
the lightcone at a very high redshift ze ≈ 100, for which 1) HT ≈ HR and the universe is
approximately homogeneous on a constant t = t(ze) hypersurface, 2) the point r(ze) is away
from the inhomogeneous region and 3) the radiation contribution is still negligible. These
values are given by

Ωeff
m =

ρ(r∞, t0)

3H2
T (r∞)

≈ Ωout , (3.31)

Ωeff
b ≈ fb Ωout , (3.32)

Heff
0 =

2HT (ze) +HR(ze)

3
√

Ωeff
m (1 + ze)3 + (1− Ωeff

m )(1 + ze)2
. (3.33)

Here Heff
0 can be understood as “rewinding” the LTB value of the average expansion rate

2HT (ze)/3 +HR(ze)/3 using the FRW asymptotic value of Ωm.
The fitting formulae give a comoving scale in a FRW universe which coincides with the

physical value at t = t0 for the usual definition of the scale factor in the asymptotic FRW
metric a(t0) = a0 = 1. The corresponding scale at t0 is valid in the limit r →∞, but can be
related to the radial and transverse physical scales using (3.28,3.29,3.30). For a point located
on the past lightcone of the central observer, the values are

lTBAO(z) ≡ ξT (z)lBAO(r∞, t0) =
A(r(z), t(z))

A(r(z), te)

A(r∞, te)

A(r∞, t0)
lBAO(r∞, t0) , (3.34)

lRBAO(z) ≡ ξR(z)lBAO(r∞, t0) =
A′(r(z), t(z))

A′(r(z), te)

A′(r∞, te)

A′(r∞, t0)
lBAO(r∞, t0) . (3.35)

3A more physical criterion would be to consider constant density hypersurfaces. Although the difference is
of order 0.1% in models with space-independent Big Bang, it might render helpful to generalize the treatment
of BAO for profiles with general H0(r).
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Figure 3.3: Effects on the LTB metric on the BAO scale with respect to their FRW analogue.
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factors accounts for the anisotropy of the scales in the angular and transverse direction,
respectively. The geometric averaged rescaling factor (black solid) is used for volumetric
BAO determinations through the quantity dLTB

z = (1 + z)ξ(z) dFRW
z (3.43). Note that all

three curves coincide in r = 0, since the void is locally isotropic at the center.

The first equalities define a transversal and longitudinal rescaling factors (see Figure 3.3),
which reduce to (1 + z)−1 in the homogeneous limit.

3.2.4 Comparison with the Observed BAO Scale

The BAO scale can be extracted from the galaxy correlation function measured in galaxy
surveys. What is actually observed is a combination of the angular correlation θBAO and the
correlation in redshift space ∆zBAO [209]. In order to compare the models with observations,
we need to relate the isotropized correlation measured by the surveys

dz =

(
θ2
BAO

∆zBAO
z

)1/3

, (3.36)

to the physical scales computed in the previous Section.4

The angular correlation can be readily obtained from the definition of the angular
diameter distance as the ratio between a known (transverse) length and the angle it subtends

θBAO =
lTBAO(z)

DA(z)
. (3.37)

4The present discussion follows Section 4.6.3 of Biswas et al. [187]. Our result (3.41) has the same form
as their equation (4.48) after several coefficients cancel out. However, their computation assumes the BAO
scale to be given by the local values of ΩM (r),ΩB(r), H0(r) instead of obtaining them from the asymptotic
FRW value and the factor (1 + zrec) is taken to be given by the volume element comparison on the worldline
of constant r = r(z) instead of by the asymptotic value r →∞.
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The redshift correlation can be related to the radial coordinate separation by means of the
redshift equation (3.15)

∆zBAO =

∫ r(z)+∆rBAO/2

r(z)−∆rBAO/2

dz

dr
dr ≈ (1 + z)Ȧ′(r(z), t(z))√

1− k(r)
∆rBAO , (3.38)

where in the second equality the integrand has been assumed to be constant.5 Similarly, the
coordinate characteristic scale ∆r is given in terms of the physical scale through an integral

∆rBAO ≈
√

1− k(r)

A′(r(z), t(z))
lRBAO(z) . (3.39)

Both equations relate the physical correlation with the redshift correlation

∆zBAO = (1 + z)HR(z)lRBAO(z) (3.40)

Constructing the geometric mean (3.36) using (3.37,3.40) is straightforward:

dLTBz =

(
HR

z
(1 + z)

1

DA(z)2

)1/3

ξ(z) l(r∞, t0) , (3.41)

where the scale conversion arising from (3.34,3.35) has been introduced in the factor ξ(z) ≡
(ξR(z)ξ2

T (z))1/3, given by

ξ(z) =

(
A′(r(z), t(z))

A′(r(z), te)

A′(r∞, te)

A′(r∞, t0)

)1/3(A(r(z), t(z))

A(r(z), te)

A(r∞, te)

A(r∞, t)

)2/3

, (3.42)

using a suitable early time te = t(z ∼ 100) to convert the scale as described in the previous
Section. Note that due to the FRW limit, the ratios of the factors computed at r∞ can be
expressed as redshift factors a(te)/a0 = (1 + ze)

−1.
Equation (3.41) can be easily related to the usual expression for dz

dLTB
z = (1 + z)ξ(z)

l(r∞, t0)

DV (z)
= (1 + z)ξ(z) dFRW

z . (3.43)

in terms of the usual volume distance

DV (z) =

(
(1 + z)2DA(z)2 z

HR(z)

)1/3

. (3.44)

Relation (3.43) absorbs the effects of the inhomogeneous rescaling in the BAO observations,
which pick up a factor (1 + z)ξ(z) with respect to the FRW case. The difference between
the two rescaling factors accounts for the anisotropy between the transverse and longitudinal
BAO scales, while their redshift dependence is a consequence of the inhomogeneity. Both
effects are shown in Figure 3.3. Note also that there will be an additional difference because
of the modified relations between the angular diameter distance (related to the transverse
expansion) and the longitudinal expansion rate entering the geometric mean distance (3.44).

5This approximation is justified because the void variation scale is much larger than ∆rBAO. The exact
result ∆z = z(r + ∆rBAO)− z(r −∆rBAO) can be obtained by inverting r(z).
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3.2.5 The Alcock-Paczynski Effect in LTB Models

The Alcock-Paczynski (AP) effect [210] is the geometric distortion of spherical objects due
to cosmological expansion, since distances in the radial direction away from an observer are
determined in redshift space, while transverse distances are seen as angular separations in
the sky. This motivates the definition of the dimensionless distortion factor:

fAP
FRW

(z) ≡ ∆z

∆θ
= DA(z)HR(z)(1 + z) . (3.45)

In a homogeneous universe, the above relation can be tested against spherical (or spherically
distributed) objects for which ∆z and ∆θ are measured.6 This technique has been used to
constrain cosmological models [104, 151, 211].

In LTB models with space-independent Big Bang time, initially spherical distributions
are intrinsically distorted due to the local shear, as discussed in Section 3.2.1. Using the
angular and redshift projection of physical distances for the inhomogeneous models given by
equations (3.37, 3.40), the analogue of the AP relation is modified by the ratio of the radial
and transverse rescaling factors

fAP
LTB

(z) =
ξR(z)

ξT (z)
DA(z)HR(z)(1 + z) =

ξR(z)

ξT (z)
fAP
FRW

(z) . (3.46)

The values of these factors in both directions can be seen in Figure 3.3. As the universe
expands faster in the transverse than in the radial direction, the distortion factor has a lower
value than in FRW models, on top of the different relation between DA(z) and HR(z).

The distortion factor (3.46) is sensitive to cosmic shear (3.6) through the ratio of the
transverse and radial rescaling (e.g. steeper profiles enhance the asymmetry). In the limit of
zero background shear, the ratio of rescaling factors tends to one, and the only difference w.r.t.
FRW comes from the different relation between the angular diameter distance and the radial
Hubble rate. Therefore, the information one obtains from the AP effect is complementary
to the geometric mean distance given by Eq. (3.43), which only depends on the expansion,
i.e. the product of the rescaling in the three spatial directions, and is unable to tell apart
ξR from ξT . Therefore, the AP effect is not only able to distinguish FRW from LTB models,
but could eventually allow to observationally discriminate between different LTB profiles.

3.3 Analysis and Results

In this Section the LTB models described in Section 3.1 will be compared to observations.
The present analysis relies on the interplay between the cosmic distances obtained by type Ia
supernovae and the distances and rescaling constraints from the baryon acoustic oscillation
scale. SNe can be regarded as a standard candle and BAO as a standard ruler, which suffers
additional effects due to the inhomogeneity (as described in Section 3.2). The measurement
of the local expansion rate and the CMB peaks are also considered, their effect being to
provide a calibration for the standard candles and rulers, respectively. However, the main
result is independent of this calibration.

6In practice, the AP test is difficult to perform due to dynamical effects such as the Redshift Space
Distortions caused by cosmic structures, which induce peculiar velocities that affect the redshift in a systematic
way.
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3.3. Analysis and Results

3.3.1 Observational Data

The models were compared against several datasets, which are described below. The BAO,
SNe and H0 data have been described in Chapter 2. A simplified method to implement CMB
constraints in LTB models without computing cosmological perturbations is presented at the
end of this Section.

Type Ia Supernovae

The dimming of distant supernovae constitutes a solid probe of void models in the interval
0.01 . z . 1.5, as the luminosity distance depends on all the parameters of the model
in a nontrivial way. One should in principle consider variations on the color and stretch
parameters when fitting the model [157, 158]. However, the result of the analysis should not
vary significantly since the LTB models we are considering usually give luminosity distance
curves very similar to the standard model. The present analysis also includes the covariance
matrix between the supernova data, which adds information about this calibration procedure
by taking into account the covariance between supernovae with similar color and stretch. The
supernovae data will be used as presented in Section 2.5.

Local Expansion Rate

The dependence of the expansion rate with redshift in a LTB cosmology is in general very
different than in the ΛCDM case, even for low redshifts z < 0.1. In order to reproduce the
method used in [165] and provide a more fair comparison, we implement the constraints on the
model using supernovae luminosities rather than the model parameter Hin. The constraints
labeled as H0 are implemented as described in Section 2.5.1.

Baryon Acoustic Scale

Although the use of BAO to constrain LTB models has raised some criticism [27, 164], we will
rely on our results from Section 3.2 showing that the baryonic features remain at constant
coordinate positions to a good approximation and relating the transverse and radial BAO
scales at different redshifts to the asymptotic values. The data used are those presented
in Section 2.4.1 and summarized Table 2.2. These measurements are given in terms of the
variable dz, which in our model is computed as (3.41), or alternatively (3.43), (3.44). The
additional data point involving the angular correlation is to be compared to the theoretical
θBAO prediction (3.37).

Cosmic Microwave Background

The cosmic microwave background radiation in LTB models has been actively investigated
[199–203], as it constitutes the most solid piece of evidence for statistical isotropy and the
most powerful tool in cosmological constraints. The obtention of precise constraints from
the CMB is beyond the scope of this work, where we focus only on geometric aspects of the
model. Therefore and only a relatively simple analysis based on the location of the first peaks
will be employed, in order to give an idea of the effects of calibrating the standard rulers.
This method yields weaker constraints than using the whole WMAP data and the spectra
computed in linear perturbation theory, WMAP distance prior R, la, z∗ [19] (See Section 3.3
and Figure 3.7) or other model independent determinations [124].
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3.3. Analysis and Results

If our galaxy is located very close to the center of the void, the radiation coming from
the CMB will be highly isotropic and therefore well described by the angular power spectrum
Cl, with no direction dependence. As usual, it will display a characteristic pattern of peaks
and troughs located at multipoles

lm = (m− φm) lA , (3.47)

where integer values of m label the peaks, half integer values correspond to troughs, and φm
are corrections that depends on the details of the cosmology before the recombination epoch.
The overall factor is fixed by the CMB acoustic scale

lA = π
DA(z∗)

rs(z∗)(1 + z∗)−1
, (3.48)

determined by the ratio between the observed angular diameter distance until recombination
and the sound horizon at that epoch. Further information on the cosmological parameters
can be obtained by considering the relative heights of the acoustic peaks compared to the
first one Ha = Cla/Cl1 .

The decoupling epoch occurs at an early time when the universe is very homogeneous
and the primary anisotropies are produced on our past lightcone at a radius much larger than
the size of the void r(z ∼ 1100)� R. In this case the pre-recombination physics is effectively
the same as in a homogeneous universe, and we can assume that the relative peak positions
(m− δφm) and heights Ha are those of a FRW universe with the effective asymptotic values
of the LTB model discussed in Section Section 3.2.3.7 On top of modifying these asymptotic
parameters, the only effects from the void will be to shift the peaks by varying the acoustic
scale lA through the angular diameter distance DA(z∗). Our analysis neglects secondary
contributions such as the integrated Sachs Wolf effect on the lower multipoles or the action
of gravitational lensing, which affects the relative heights of the peaks. Furthermore, we will
assume no radiation contribution to the angular distance to recombination.8

In order to compare the theoretical predictions and the observations we will follow the
approach described by Marra and Pääkkönen [189]. The corrections to the peak locations φm
and heights depend on the effective parameters through the ratio of matter-radiation density
and recombination and the physical baryon density Ωmh

2, as well as the spectral index ns
that characterizes the power spectrum of primordial perturbations. Note that relaxing the
common assumption of a nearly scale invariant primordial spectrum considerably reduces
the tension between CMB and the local expansion rate [158]. Accurate fitting formulae in
terms of these quantities are provided in reference [123] for the recombination epoch z∗ and
the sound horizon rs(z∗), reference [214] for lm with m = 1, 3

2 , 2, 3 and reference [215] for the
relative height Ha of the second and first peak a = 2, 3. Figure 3.6 shows the location of the
peaks reconstructed using this method.

The total likelihood is given by

χ2
CMB =

∑
m∈{1, 3

2
,2,3}

(
lobs
m − lLTB

m

)2
2σ2

lm

+
∑

a∈{2,3}

(
Hobs
a −HLTB

a

)2
2σ2

Ha

, (3.49)

7Variations in the effective CMB temperature have not been considered because for the profiles under
consideration (compensated voids) there is no significant departure from T0 = 2.725K [176, 189].

8See references [201, 212, 213] for discussions on radiation in the context of LTB models.
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Figure 3.6: CMB spectrum. Black dots and error bars correspond to the binned WMAP7
data and the red line is the CMB only best fit for ΛCDM [18]. The color points are the
reconstructed positions of the peaks using the method described in Section 3.3.1 for the
minimum χ2 models (Section 3.3). For visualization aid, the WMAP best fit height has been
assumed for the first peak, which is equivalent to a normalization, and the first through due
to the lack of a fitting formula (The residuals in H3/2 are due to the propagation of l3/2).
Although the formulae do not exactly recover the values computed in linear perturbation
theory, they fall within the assumed errors (1% for l1, 3% for the rest). Note that the
LTB models require values (fb ≈ 0.7, ns ≈ 0.6 that depart considerably from the standard
model (Section 3.3). More precise constraints taken into account the full spectrum would
considerably lower the quality of the fit.

where the positions and heights of the peaks are those matching the WMAP 7 year best fit
model. As in reference [189], we have taken the errors to be of 1% for the position of the
first peak and 3% for the remaining parameters. It is important to note that this likelihood
analysis is very simplified and its main aim is to provide an insight on how the information
from the CMB helps to sharpen the BAO constraints by fixing the initial size of the standard
ruler.

3.3.2 MCMC Analysis

In order to constrain the parameter space and address the viability of the different models,
we run several Markov Chain Monte Carlo (MCMC) analysis using a modified version of
the publicly available code CMBEasy [216], which includes the integration of the coordinates
over the lightcone and the computation of the cosmological observables in the LTB model.
The data sets employed are described in Section 3.3.1. CMBEasy’s built-in MCMC driver
establishes the convergence of the chains through the test of Gelman and Rubin [217], which
determines the length of the burn-in sequence and freezes the step-size, which is a necessary
condition for the convergence of the MCMC algorithm [218] (see Appendix A). In addition,
the chains were monitored manually to ensure a proper sampling of the parameter space.

Additionally to the CGBH and the OCGBH models described in Section 3.1.1, a ΛCDM
model and a wCDM model with constant equation of state were studied using the same
data. Separate runs were performed for each of the displayed contours corresponding to
the constraints of the separate sets (CMB, BAO, SNe) as well as the combined constraints
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3.3. Analysis and Results

FRW Models

H0 [Mpc/km/s] ΩM ΩΛ −w 100fb ns
30− 90 0.05− 0.8 0− 1.2 0− 5 1− 25 0.05− 1.3

GBH-LTB Models

Hin [Mpc/km/s] Ωin Ωout R [Gpc] ∆R [Gpc] 100fb ns
30− 90 0.01− 0.5 0.1− 1 0− 5 0.5− 5 1− 25 0.05− 1.3

Table 3.1: Priors on the model parameters used in the MCMCs. In order to facilitate the
comparison between the two LTB models, for the CGBH profile we have fixed the value of
H(r = 0) ≡ Hin at the center of the void instead of the more obscure parameter H0. Ωout

and w are only varied in the OCGBH and wCDM models.

H0+BAO+CMB+SNe. For the inhomogeneous models the additional combinations H0+SNe
and BAO+CMB were considered, which combine the information of standard candles/rulers
together with their calibrations (as opposed to the SNe/BAO-only). All the runs used flat
priors on the model parameters, which are given in Table 3.1.

The results from the combined constraints can be seen in Table 3.2. Figures 3.7, 3.8,
3.9 and 3.10 show the two-dimensional marginalized likelihood contours obtained from the
individual and combined data sets. Our discussion starts by considering the homogeneous
reference models. Then the results for the inhomogeneous CGBH and OCGBH profiles will
be addressed, and the goodness of fit of the different models compared using different criteria.

3.3.3 Homogeneous Models

For ΛCDM the recovered parameters are in good agreement with previous results. However,
the region compatible with CMB data (first plot in Figure 3.7) is broader than usual around
the flatness line. This lack of precision is caused by the partial use of the CMB data (i.e.
only the peaks instead of the whole Cl spectrum), together with the broad parameter priors
allowed. When combined with other measurements, it also affects the recovered value of the
curvature Ωk = 0.003+0.015

−0.025, which is still very close to flat but has larger error bars than
usual. In a computation taking into account the full WMAP7 data, a deviation with respect
to the measured values of the peak positions would also displace many of the intermediate
points and cause a more dramatic decrease of the likelihood, leading to tighter bounds.

The weakness of the CMB constraints is reflected again in the recovered values for the
wCDM model (second and third plots in Figure 3.7). In this case all the parameters except
H0, which is independently constrained by the nearby expansion rate, depart considerably
from the standard ones. These allow for lower values of the baryon fraction and the spectral
index, which in turn increase the matter fraction and decrease the dark energy content. A
very dramatic consequence of the weakness of these constraints can be seen in the recovered
value of the curvature Ωk = 0.04 ± 0.02, two sigma away from flatness. The low value of
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ΛCDM Model

H0 [Mpc/km/s] ΩM ΩΛ 100fb ns

All - Min χ2 70.7 0.28 0.72 17 0.97

Marginalized 70.3+1.7
−1.5 0.27±0.03 0.73± 0.05 17± 0.04 0.99+0.06

−0.09

wCDM Model

H0 [Mpc/km/s] ΩM ΩΛ w 100fb ns

72.8 0.32 0.66 −1.26 12 0.87

73.5 ± 2.3 0.33 ± 0.04 0.64 ± 0.06 −1.26+0.17
−0.22 0.10+0.03

−0.02 0.82+0.08
−0.06

asymptotically flat Constrained GBH model (CGBH)

Hin Ωin R [Gpc] dR [Gpc] 100fb ns

All - Min χ2 66.4 0.21 0.02 2.78 7.7 0.74

Marginalized 66.0±1.4 0.22± 0.04 0.18+0.64
−0.18 2.56+0.28

−0.24 7.7± 0.4 0.74± 0.03

BAO+CMB 61.6±2.4 0.32+0.06
−0.04 3.92+0.48

−3.71 2.76+0.50
−0.88 7.8± 0.8 0.73± 0.04

SNe+H0 74.0±2.6 0.07± 0.04 1.95+1.22
−1.82 3.19+1.63

−1.66 - -

asymptotically Open Constrained GBH model (OCGBH)

Hin Ωin Ωout R [Gpc] dR [Gpc] 100fb ns

71.8 0.21 0.87 0.30 1.48 6.3 0.67

71.1± 2.8 0.22±0.04 0.86± 0.03 0.20+0.87
−0.19 1.33+0.36

−0.32 6.2± 0.5 0.68± 0.03

63.8+4.2
−2.8 0.35±0.06 0.98+0.02

−0.11 0.72+2.5
−0.67 1.79± 0.89 6.8± 0.9 0.69+0.05

−0.03

73.4+3.1
−2.1 0.06±0.04 0.89+0.09

−0.25 0.80+1.66
−0.74 1.63+2.04

−0.79 - -

Table 3.2: Parameters from the MCMC including H0+SNe+BAO+CMB discussed Section
3.3. The first lines correspond to the minimum χ2 models, while the second lines corresponds
to the best fit model with one sigma errors after marginalizing over the remaining parameters.
Note that since the LTB models do not give good fits to the data the errors are apparently
very small (see Figures 3.7, 3.8, 3.9 and 3.10). For the sake of comparison, in the case of the
LTB models the results from the separate fits using BAO+CMB and SNE+H0 have been
added (third and fourth lines).
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ΛCDM Model

wCDM Model

Figure 3.7: One and two sigma regions for the marginalized likelihood function correspond-
ing to the ΛCDM and wCDM homogeneous model as obtained from BAO (green), CMB (Or-
ange) and SNe (blue). Gray contours are the combined constraints H0+BAO+CMB+SNe.
Note that the CMB compatible regions are much broader than usual due to the simplifica-
tion of the method. Black unfilled lines in the wCDM plots correspond to using the WMAP
distance prior R, z∗, lA [19] combined with H0+BAO+SNe or individually (shown only in the
ΩΛ − Ωm plane), which recover the standard results.
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ΩΛ ≈ 0.62 is then compensated with an anomalously low equation of state w ≈ −1.34.9

Note also how the BAO and SNe contours span a similar region in both cases. This is a
consequence of them being determined by measurements of standard rulers and candles with
arbitrary calibration, over a comparable redshift interval (due to the new BAO data provided
by the WiggleZ collaboration, up to z ∼ 0.8). Since in FRW both datasets depend only on
the same distance-redshift relation and are consistent with each other, they yield basically
the same information and the recovered regions overlap.

3.3.4 Inhomogeneous Models

Discrepancies between the different datasets are encountered for both models regarding the
matter content and the expansion rate at the center of the void, as can be seen in Figures
3.8, 3.9, 3.10. This becomes particularly clear for the Ωin − hin plane.

The most severe problem for both models is the existing tension regarding the value of
Ωin determined from BAO and SNe, which differs by roughly 3σ for the two models (see figures
3.8, 3.9). For example, the asymptotically flat model (CGBH) the BAO-only 1D marginalized
likelihood yields Ωin = 0.28+0.06

−0.05(1σ), a much higher value than determined by SNe Ωin =
0.07± 0.04(1σ). This discrepancy is showing how the distance redshift relation necessary to
explain the supernovae dimming is incompatible with the stretch of the standard ruler inside
the void due to the inhomogeneous rescaling discussed in Section 3.2. The low value of Ωin

necessary to fit SNe observations increases the expansion rate and therefore stretches the
BAO scale considerably near the center, making it incompatible with the observed values at
higher redshift. This is a purely geometric discrepancy, valid for arbitrary calibration of the
standard candles and rulers, and is completely independent of the dynamics originating the
characteristic length. Figures 3.4, 3.5 show how the best fit models represent a compromise
that fails to fit both datasets at low redshift, where the BAO rescaling (Fig. 3.3) is largest.

Naturally, the tension becomes more dramatic when the SNe data are compared to
the BAO+CMB combination, because the CMB effectively reduces the allowed range of the
initial BAO scale by constraining Hin, fb and Ωout. The independence of the constraints on
the initial BAO scale is the reason why the asymptotically open model (OCGBH) does not
ease the tension between BAO and SNe. This is partly because the apparent freedom gained
from allowing Ωout to vary does not provide essentially different values of the asymptotic BAO
scale, already ensured by the freedom in fb. The other reason is that neither SNe nor BAO-
only constraints seem to depend on the value of Ωout. We can regard the dashed green and
blue contours in Figures 3.8, 3.9, 3.10) as the purely geometric constraints for arbitrary values
of the standard rulers/candles, while the filled green and blue contours would correspond to
adding priors to those calibrations.

The asymptotically flat model (CGBH) also shows a tension between the value of Hin

determined by H0+SNe and CMB+BAO, both being discrepant at 3σ. Note that the tension
is manifest even using very simplified CMB data, although these yield much looser constraints
than the full Cl spectrum. In the asymptotically open model, the additional freedom achieved

9The discrepancies disappear when the WMAP7 distance prior R, z∗, lA [19] are used instead of the peak
positions (black, unfilled contours in Figure 3.7), recovering Ωk ≈ 0 and w ≈ −1. These quantities have been
very accurately determined by the WMAP collaboration using the full CMB spectrum, and are able to break
the degeneracies in the model (e.g. the baryon fraction). Although they are considerably more precise than
the CMB peak information we used (described in Section 3.3.1), the WMAP distance prior can not be directly
applied to inhomogeneous models (e.g. LTB models with decoupling redshifts z∗ & 1110 considerably higher
than the standard value z∗ = 1091.3± 0.9 can yield a good fit [199]).
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Figure 3.8: CGBH model. One and two sigma regions for the marginalized likelihood
function as obtained from BAO (green), CMB (Orange) and SNe (blue). The filled contours
represent the combined constraints using SNe+H0 (blue) and BAO+CMB (green). The black
lines correspond to the combined data BAO+CMB+SNe+H0.
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Figure 3.9: OGBH model. One and two sigma regions for the marginalized likelihood
function as obtained from BAO (green), CMB (Orange) and SNe (blue). The filled contours
represent the combined constraints using SNe+H0 (blue) and BAO+CMB (green). The black
lines correspond to the combined data BAO+CMB+SNe+H0.
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Figure 3.10: Continuation of Figure 3.9.

allows one to recover agreement by reducing the value of Ωout, yielding a concordant value
for Hin from the different datasets. However, the tension would reappear in more a thorough
analysis including the full CMB power spectrum data, which typically require hin ∼ 0.4−0.5
[153]. This increase in the local expansion rate also reduces the age of the universe, which is
proportional to H0(r)−1. Although it has not been explicitly accounted for in the MCMC,
Figure 3.11 shows how models with a higher expansion rate enter in tension with the limits
on the age of the universe obtained from Globular Clusters [219], posing yet another difficulty
for this type of models.

The recovered values of the baryon fraction and the spectral index, mainly determined
by the CMB, are much lower than in standard cosmologies. This trend agrees with previous
studies in which compensated voids are constrained using the full CMB [176]. We note that
these features are not relevant to our discussion because 1) the main results are geometric
and do not depend on the details of the CMB physics and 2) the obtained values of fb, ns
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Figure 3.11: Age of the universe for the best fit models. The curves correspond to marginal-
ization of the MCMC chains over the (homogeneous) Big Bang time (note that it is a derived
quantity rather than a parameter varied in the exploration). The gray area shows the region
excluded by the age of Globular Clusters in the Milky Way.

rely on a simplified treatment of the CMB peaks.
The best fit models turn out to be rather cuspy, as can be seen in the preference towards

R ≈ 0 Gpc in both the asymptotically flat and open voids. Since the fit is not very good and
the individual observations are not very restrictive by themselves (including the combinations
BAO+CMB, SNe+H0), this feature might well be due to a compromise between the different
datasets, and could be related to the fact that cuspy voids achieve better resemblance to an
accelerating universe at low redshift [171]. In this case, the size of the void is given by the
steepness of the inhomogeneity ∆R, which acquires a value ∼ 2.5 Gpc in the flat case but a
smaller value ∼ 1.5 Gpc in the asymptotically open case. Again, the individual data sets do
not yield significant enough information about the value of R,∆R. Other than the smallness
of the asymptotically open void and the better agreement it gives on the value of H0, there
is no significant difference between the two models.

3.3.5 Model Comparison

We now proceed to compare the different models under several criteria. The tensions between
the different datasets (Figures 3.8, 3.9 and 3.10) and the poor fit to SNe and BAO (Figures
3.4 and 2.2) will be reflected in poorer figures with respect to the homogeneous models.
Furthermore, inhomogeneous models will be additionally penalized because they have a larger
number of parameters. Table 3.3 shows the χ2 values associated to the different observations
and the total values, as well as the result of the different model comparison criteria discussed
below.

The standard frequentist analysis of parameter estimation, given a set of data, is not
very useful for model selection, since it is difficult to compare models with different number
of parameters. For instance, the usual method of comparing minimum χ2 per effective degree
of freedom normally misses the point and is not very decisive, as can be seen in the very
close values achieved by the different models. Other methods to decide which model gives
the best description include various Information Criteria which additionally penalize models
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CGBH OCGBH ΛCDM wCDM

Union SNe 539.94 539.06 530.70 530.40
Hubble µ0 6.97 0.38 2.17 0.14

6dF 5.35 4.73 0.35 0.09
SDSS 0.73 0.04 1.29 1.24
WiggleZ 0.65 1.20 0.93 0.63
Carnero et al. 0.78 0.12 0.61 0.34
Total BAO 7.51 6.09 3.18 2.30

Peak positions 0.87 0.30 0.96 0.07
Peak heights 1.13 0.11 0.24 0.04
Total CMB 2.00 0.41 1.20 0.11

Total χ2 +19.89 +9.40 536.56 -3.62

# free parameters 6 7 5 6
χ2/d.o.f. 0.985 0.968 0.948 0.943

Akaike IC (3.50) +22 +13 546.6 -1.6
Bayesian IC (3.51) +26.2 +15.7 568.3 +2.7
Bayes factor (3.53) +10 +6 282.2 +2.6

Table 3.3: χ2 contributions to the maximum likelihood models as found by the MCMCs
with H0+BAO+CMB+SNe and results from different model comparison criteria discussed
in Section 3.3.5. The values χ2 as well as the model comparison criteria are given show the
total value for the ΛCDM best fit, while the other models are given relative to those (minus
values are favoured w.r.t. the concordance model, while positive values are disfavoured). The
Bayes factor is given by the difference in − logE (3.53).

described by more parameters. Such include the (corrected) Akaike Information Criterion
(AIC) [220] and Bayesian Information Criterion (BIC) [221], given by

AIC = χ2
min + 2k +

2k(k − 1)

N − k − 1
, (3.50)

BIC = χ2
min + k lnN , (3.51)

where k is the number of free parameters of a given models and N the number datapoints
used in the constraints. The Bayesian evidence

E(D|M) =

∫
du L(D|u,M)π(u,M) , (3.52)

is given by the integral of the likelihood L(D|u,M) over the values of the model parameters
u allowed by the priors π(u,M). The computation of the Bayesian evidence is difficult in
general, therefore, we will use a simple expression which can be obtained provided that the
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likelihood is a single isolated peak, far from the edges of the prior ranges [184]

− lnE = − lnLmax + lnA+
n∑
i

ln(umax
i − umin

i ) , (3.53)

where A is the normalization of the likelihood, and [umin
i , umax

i ] is the range of parameter ui
allowed in the MCMC exploration (assuming a flat priors), i = 1 . . . n. Moreover, for the
case of a Gaussian likelihood,

L(u) = A exp
[
− 1

2
uTC−1u

]
, (3.54)

we find A = (2π)−n/2/
√

detC, where C is the covariance matrix and xi = ui − ūi. It is
clear that whenever the prior ranges are too big for the likelihood, the Bayesian evidence is
penalized. An estimate of the covariance matrix can be obtained assuming that the obtained
parameters are independent from each other. In that situation, the covariance matrix is
given by the square of the one sigma allowed ranges in each parameter and the determinant
becomes detC =

∏
i σ

2
i , where we take the average between the upper and lower bounds given

in Table 3.2. The determinant computed using the eigenvalues of the covariance matrix used
in the MCMC sampling yields similar results.

The bottom part of Table 3.3 shows similar values for the homogeneous models, but the
preferred one depends ultimately on the chosen criterion. It is interesting to note that the
Bayes factor favors the simpler ΛCDM with a difference of 2.6, despite the slightly better χ2

fit of the wCDM model. This difference is due to the presence of an additional parameter, w,
together with the large prior postulated for it, [−5, 0], relative to the 1σ region, ∆w ≈ 0.2.

The logarithm of the Bayes factor for the LTB models w.r.t. to the fiducial ΛCDM is 10
and 6, for the asymptotically flat and open GBH inhomogeneous models respectively, due to
the bad fit and the larger parameter range explored. Although the asymptotically open model
yields a better Bayes factor, even with an additional parameter, both are strongly disfavored
according to Jeffreys’ scale, since the difference in the logarithm of the Bayes factor is higher
than 5. The Akaike and Bayesian Information Criteria also prefer the homogeneous model,
the rejection being significantly stronger for the asymptotically flat case due to the extra
tension in the local expansion rate. Increasingly accurate data have significantly worsened
the fits of inhomogeneous universes, which were compatible just few years ago (cf. reference
[184]).

3.4 Discussion

In this Chapter we presented new constraints on inhomogeneous Lemâıtre-Tolman-Bondi
models in the light of the most recent cosmological data, focusing on profiles of the GBH
type with a space-independent Big Bang and baryon fraction. The inclusion of higher redshift
BAO data together with type Ia supernovae allows one to reject the models based only on
BAO and SNe, independently of other observational data such as the CMB. Additionally,
a model independent method to constraint the local expansion rate through a prior on the
supernovae luminosity was introduced.

The physical BAO scale at early times was computed in terms of the asymptotic value
and then projected to different redshifts using the background LTB metric. This method is
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justified due to the existence and stability of constant coordinate geodesic solutions, which
are expected to be followed by baryonic overdensities in position space. In addition to the
time evolution, the BAO scale is shown to become inhomogeneous and anisotropic due to
the different expansion rates in the radial and transverse directions. The dependence of the
observed BAO scale on both the cosmic distances and the evolution of the scale factor leads
generically to different predictions than pure distance indicators such as SNe. The departure
is largest near the center of the void, precisely because there is less matter to slow down
the expansion that drives the growth of the BAO scale. Ultimately, the difference between
the two distances can be regarded as a concrete realization of more general tests of the
Copernican Principle [222].

The addition of BAO data at higher redshifts increases considerably their constrain-
ing power in this type of models because they help to fix the asymptotic value. The result
represents a new drawback for this type of models, as the value of the local matter density
Ωin & 0.2 preferred by BAO is about 3σ apart from the value Ωin . 0.18 found using Super-
novae, as can be inferred from Figures 3.8 and 3.9. The tension between the two datasets
persists when asymptotically open models are studied, and worsens when the information
from the CMB is added, since it constraints the parameters involved in the acoustic scale
determination (fb, h,Ωout). Asymptotically flat LTB models show an additional tension re-
garding the value of the local Hubble rate when CMB and BAO are combined. Allowing
Ωout ≤ 1 relaxes this incompatibility, but we expect it to re-emerge in a more detailed anal-
ysis of the CMB including all scales and secondary contributions such as the ISW effect
and gravitational lensing. Additionally, larger values of the expansion rate might render the
universe too young to account for the ages of stars in globular clusters. The adiabatic GBH
models fail to simultaneously fit the data, and a Bayesian analysis shows that they are ruled
out at high confidence.

The above results were obtained for a particular choice of the matter profile. However,
the difficulties of the model are manifest in the determined value of matter contrast at the
center of the void, while the remaining parameters are poorly constrained by individual
datasets. The departure between cosmic rulers and candles becomes most severe at the
center of the void, and we expect that Ωin ≡ ΩM (0) captures this tension regardless of other
features. Since Ωin can be defined for any LTB model independently of the parameterization,
it is reasonable to expect this result to hold for all large void models with space-independent
Big Bang and baryon fraction. Nonetheless, we have to keep in mind that the SNe and
BAO constraints depend on all the parameters through the distance determinations and the
evolution of the BAO scale up to a certain redshift, and therefore different shapes for the
profile might soften the tension between the two datasets.10

Similarly to the dependence of CMB constraints with the primordial power spectrum
[158], it is conceivable that fine tuned initial perturbations could be used to reconcile the BAO
observations with SNe in adiabatic voids. However, such conditions would not only need to
provide an enhanced scale to explain the observed feature in galaxy correlation, but also to
hide the actual BAO scale that would naturally form due to the existence of a preferred scale
(the sound horizon at the recombination epoch). On top of this challenging task, the fake
BAO scale should be shorter near the center to compensate the inhomogeneous growth and

10Recently, genetic algorithms were used to analyze the sensitivity of LTB model profiles to the data without
the introduction of a parameterization [34]. The results were not conclusive with respect to the shape of the
void profile.
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Figure 3.12: FRW, coordinate baryon acoustic scale rs(zd) as a function of the physical
matter density Ωmh

2 for different values of the baryon fraction. The mass of the baryons acts
lowering the speed of sound in the baryon-photon fluid, and therefore increasing their amount
reduces the resulting acoustic scale, which is related to the sound horizon. An LTB model
with a higher baryon fraction near the center might render the BAO and SNe observations
compatible by lowering the value of dz ∝ rs(zd) near the center of the void (see Figure 3.5).

fit the observations, therefore requiring some amount of radial dependence that would be at
odds with the (quasi) homogeneous initial state.

The effects of the inhomogeneity on the BAO scale are unavoidable. Even if a different
void profile might yield a slightly better fit, more precise data e.g. from future surveys such
as Euclid [108, 223] will eventually be able to distinguish adiabatic LTB models from the
homogeneous case regardless of the shape of the inhomogeneity. Together with the remaining
observational problems for large void models with space-independent Big Bang, this sets the
stage for abandoning the adiabatic assumption. A scenario with space dependent Big Bang
time would require more careful considerations on the origin of the BAO scale to account for
the early time inhomogeneity, but it is still possible that the freedom gained from decoupling
H0(r) from ΩM(r) renders BAO and SNe observations compatible, although the modulation
of the Hubble rate is restricted by the local and asymptotic values, fixed by SNe luminosity
priors and the CMB.11

A simpler possibility to reconcile SNe and BAO would be to allow for large scale baryon
isocurvature modes, and induce a radial dependence on the early time BAO scale through
a non-constant baryon to matter ratio fb(r), a possibility that has been explored as a way
to explain the observed abundances of primordial nuclei and attempt to solve the primordial
lithium problem [180]. Figure 3.5 suggests that lowering the local value near the center of the
void would give a nicer fit to the observations, since the value of dz ∝ rs/DV is proportional
to the physical acoustic scale. A higher baryon fraction acts reducing the speed of sound of
the baryon-photon fluid, therefore shortening the sound horizon that determines the observed
BAO scale (see Figure 3.12). Adding more baryons at the center of the void would provide
the necessary freedom to compensate for the inhomogeneous expansion and render the model

11Models with arbitrary H0(r) also predict a too large kinematic Sunyaev-Zel’dovich effect [36, 203]. It
might be still possible to avoid these constraints by including an additional baryon to photon profile η(r) [8].
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phenomenologically viable, although more involved and less appealing.12

To summarize, we have shown how the BAO scale, acting as a standard (but evolving)
ruler and the supernovae explosions, acting as standard candles, lead to different predictions
in an inhomogeneous universe, which are disfavored by current data. The conclusion of
the analysis is that the use of purely geometric probes, that only recently have become
sufficiently constraining, is able to rule out the whole class of adiabatic LTB models. This is
independent of other dynamical constraints, like those coming from the kinematic Sunyaev-
Zel’dovich effect or the integrated Sachs-Wolfe effect, which in the near future can be used
to definitely rule out all inhomogeneous models without dark energy. The present results
are also relevant for observationaly constraining more general inhomogeneous models [225]
including some recent proposals that incorporate dark energy [226–229].

12Baryon isocurvature modes are severely constrained by CMB observations [19, 224]. However, these
constraints apply to scales much smaller than the size of the void.
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Chapter 4

Phenomenological Modifications:
Entropic Gravity

Play! Invent the world! Invent reality!

Vladimir Nabokov1

P
henomenological models are a common way to observationally test consis-
tency relations within the standard model. The most known example is the
constant equation of state dark energy model wCDM. It is not intended
to represent a physically realistic scenario, yet it is useful to encapsulate
possible departures form the standard model with the addition of a single
parameter. Useful parameterizations should be able to interpolate between

different effects, e.g. evolving/static dark energy or scale dependence of gravitational clus-
tering. In addition, they should contain the standard model as a particular point of the
parameter space. Testing them against observations is then a simple way to regard the data
and their sensitivity to departures from the standard paradigm, and the significance of such
departures whenever present.

A different but related idea is to use phenomenological models to describe certain physi-
cal situations that are difficult to consider in full detail, or for which a complete, self consistent
description does not exist. Hopefully, one can then be able to predict certain physical phe-
nomena and use them to test the underlying principles in a given context. This Chapter
undertakes the study of recent ideas about the internal structure of the space-time, namely
that gravity is an entropic force of thermodynamical origin. Modifications of gravity can
be introduced within this paradigm only phenomenologically, due to a lack of a Lagrangian
formulation. The Friedmann equations corresponding to these models have been obtained by
several authors from the Newtonian force, following an argumentation that yields the right
result in the case of General Relativity. Using this as a starting point, the modified FRW
evolution is used to constraint these scenarios.

1Look at the Harlequins! (1974)
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4.1 Gravity and Thermodynamics

The notion of gravity as an emergent force has been contemplated for a long time [230]. The
derivation of gravitational field equations from thermodynamics by Jacobson [231] supports
this, and has lead to further substantial hints of evidence for the idea [232]. Recently, the
proposal was put forward that gravity is a thermodynamic phenomenon emerging from the
holographic principle [233]. It was argued that the Newton’s law of gravitation can be
understood as an entropic force caused by the change of information holographically stored
on a screen when material bodies are moving with respect to the screen. This is described by
the first law of thermodynamics, F∆x = T∆S, connecting the force F and the displacement
∆x to the temperature T of the screen and the change of its entropy, ∆S. T can be then
identified with the Unruh temperature without referring to a horizon. Newton’s second law
follows if the entropy increase is ∆S = 2πm∆x, m being a particle mass and ∆x the distance
to a holographic screen. More to the point, assuming equipartition of the energy [234] given
by the enclosed mass, Newtonian gravitation emerges.

Cosmology has been also considered in this framework [235, 236]. As is well known,
the Friedman equation can be deduced from semi-Newtonian physics. Thus it ensues from
the above arguments as shown by reference [237]. Reference [233] has also inspired modifi-
cations to the cosmic expansion laws. The purpose of the present Chapter is to uncover the
implications of such modifications. Two approaches are investigated. One set of corrections
to the Friedmann equations is motivated by the possible connection of the surface terms
in the gravitational action to the holographic entropy. Reference [238] noted that (at the
present level of the formulation) this is equivalent to introducing sources to the continuity
equations, implying non-conservation of energy. In another approach, the derivation of the
Friedmann equation as an entropic force from basic thermodynamic principles is generalized
by taking into account loop corrections to the entropy-area law [239]. The result is corrob-
orated by its concordance with previous considerations [240], and is consistent with energy
conservation though still lacks a covariant formulation. While it might seem preliminary to
investigate in detail the predictions of these models whose foundations, at the present stage,
are rather heuristic, we believe it is useful to explore their generic consequences. Knowing
the possible form of viable extensions to our standard Friedmannian picture along the lines
of reference [241] can shed light on the way towards more rigorous derivation of the effective
entropic cosmology, and on the prospects of eventually testing these ideas by cosmological
observations.

An encouraging result in this respect is that viable cosmologies in realizations of the
quite different approaches we focus on, possess an identical expansion rate (in the simplest
but relevant setting of a universe filled by a single fluid dominated cosmology). It is also
interesting that at high curvatures this expansion rate reduces to a constant. Thus not a big
bang singularity, but instead inflation is found in the past. However, we find that the higher
curvature terms, motivated by quantum corrections, are not viable as they lack a consistent
low-energy limit. Furthermore, we impose bounds on the unknown parameters of the models
by considering the scale of inflation, big bang nucleosynthesis (BBN) and from the modified
behavior of dark matter in the post-recombination universe.

Although only phenomenologically motivated, an interesting case is a monomial correc-
tion to the area-entropy law. Such can result in acceleration without dark energy with a good
fit to the data. We perform a full Markov Chain Monte Carlo (MCMC) likelihood analysis
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exploiting astronomical data from baryon acoustic oscillations [242], supernovae [163] and
cosmic microwave background [19]. A slightly closed universe turns out to be preferred by
the data, unlike in the standard ΛCDM model. We consider also the evolution of pertur-
bations, which is determined uniquely if the Jebsen-Birkhoff law is valid. A characteristic
feature is then the growth of gravitational potentials in conjunction with the modified growth
of overdensities.

The surface term approach is discussed in Section 4.2. In Section 4.3 we consider the
implications of a specific form of area-entropy law motivated by quantum gravity, and in
Section 4.4 we explore a phenomenological power-law parametrization of this law, including
a discussion on the perturbation evolution 4.5. Finally, the results we obtained are concisely
summarized in Section 4.6.

4.2 Modifications from Surface Terms

Easson, Frampton and Smoot recently argued that extra terms should be added to the ac-
celeration equation for the scale factor. This was discussed from various points of view, in
particular it was conjectured that the additional terms can stem from the usually neglected
surface terms in the gravitational action. Present acceleration of the universe [243] and infla-
tion [244] were proposed to be explained by the presence of these terms without introducing
new fields. This is obviously an exciting prospect warranting closer inspection.

Slightly different versions of the acceleration equation were introduced in both of the
above mentioned papers. The following parametrization of the two Friedmann equations
encompass all those versions and their combinations:2

H2 =
8πG

3
ρ+ α1H

2 + α2Ḣ + 8πGα3H
4 , (4.1)

Ḣ +H2 = −4πG

3
(1 + 3w)ρ+ β1H

2 + β2Ḣ + 8πGβ3H
4 .

The six coefficients αi, βi are dimensionless for all i = 1, 2, 3. The extrinsic curvature at the
surface was argued to result in α1 = β1 = 3/2π and α2 = β2 = 3/4π and quantum corrections
in nonzero β3 [243, 244]. The equations imply that

dH

dN
= H

(
8πGc2H

2 − c1

)
, (4.2)

where N = log(a) is the e-folding time and

c1 ≡
(3− α1)(1 + w)− 2β1

2− α2(1 + 3w)− 2β2
, (4.3)

c2 =
α3(1 + 3w) + 2β3

2− α2(1 + 3w)− 2β2
. (4.4)

Note that c1 is proportional to the lower order corrections, and c2 is proportional to the higher
order contributions ∼ H4. The information lost by having only one differential equation in
(4.2) should be compensated by imposing boundary conditions from (4.1) to its solutions.

2We will not adress the case in which the two equations degenerate to one by a particular choice of the
parameters.
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In the general case of multiple fluids, the model does not uniquely determine how to the
EoS (equation of state) w evolves. The reason is that the two equations (4.1) result in only
one (non)conservation equation for the total density, and we have no unique prescription for
how the relative densities behave if the total density consists of a mixture of fluids. From
the viewpoint of reference [238], the source terms for the individual fluids are undetermined.
However, the most relevant special case of a single-fluid dominated universe allows an exact
solution where these ambiguities are absent.

4.2.1 Single Fluid

In the case that w is a constant, Eq.(4.2) can be easily solved:

H2(a) =
c1

8πG

[
c0

(
a
a0

)2c1
+ c2

] , (4.5)

c0 =
1

32π2G2(1 + w)ρ0
. (4.6)

We chose the integration constant c0 in such a way that when the entropic corrections vanish,
we recover the standard Hubble law. Although there are six unknown factors in (4.1), the
cosmological implications are rather unambiguous and can be encoded in the two numbers c1

and c2. Thus it is both feasible and meaningful to constrain them, despite our ignorance of a
theoretical prediction. From the form of H in (4.5), it is also transparent that as a→ 0, we
have a de Sitter solution and the model indeed predicts inflation. As the scale factor grows,
(nearly) standard evolution is recovered: so it is also simple to see the present versions of
the model do not provide dark energy. At early times, w = 1/3, we can obtain constraints
from BBN, and from the inflationary scale by estimating the amplitude of fluctuations. Both
the scaling modification c1 and the constant term c2 can be bounded. At late times, w = 0,
we can obtain constraints at least from the modified scaling law for dust, c1. Let us first
consider the early universe constraints before adding a cosmological constant to obtain the
present acceleration.

Let us consider the constraints from the early universe. During radiation domination,
Eq. (4.5) becomes

H2 = 8πGρ
1
2c1

a2(c1−2) + 32πG2c2ρ
. (4.7)

From this we see that the variation effective Newton’s constant is

δGeff/G ≈ (
1

2
c1 − 1)(1− 4c1 log a)− 16π2G2c1c2ρ . (4.8)

This variation can be bounded by requiring successful BBN. For instance, reference [114]
derived that δGeff = 0.09+0.22

−0.19. The radiation energy density is given by

ρ = g∗
π2

30
T 4 , (4.9)

where we use for the number of effective relativistic degrees of freedom g∗ at the nucleosyn-
thesis temperature T ∼ 1 MeV the value g∗ = 10.75. Plugging in the numbers, we obtain

− 3.5 · 10−3 < 2− c1 < 1.1 · 10−3 . (4.10)
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− 2 · 1084 < c2 < 6 · 1084 . (4.11)

Because of the tremendous hierarchy between the Planck and the BBN scale there is a
very poor constraint on the high curvature corrections c2. This can be also written as

2
√
πGc

1/4
2 < 457.6GeV −1 by restoring the dimensions.

If inflation is considered to be driven by the entropic corrections, we can estimate their
magnitude from the amplitude of perturbations observed in CMB. The amplitude of the
spectrum of quantum fluctuations of massless fields is expected to be given by the ratio

〈δφδφ〉 =
8πGH2

ε
∼ 10−10 , (4.12)

where ε is the slow-roll parameter and the right hand side is determined from observations.
The spectral index as determined from observations gives ε ∼ O(0.01). Since at early times
equation (4.5) predicts (nearly) exponential expansion with the Hubble rate 8πGH2 = c1/c2,
and we know that c1 must be of order one, successful generation of observed fluctuations
from entropic inflation suggest that c2 ∼ 1012. This estimate is much more tentative than
the previous, since it depends on the detailed physics of inflation.

4.2.2 Adding a Cosmological Constant

Acceleration at late times can be obtained by the addition of a Λ-term. Then (4.2) generalizes
to

dH

dN
= H

(
8πGc2H

2 − c1

)
+ c3

Λ

H
, (4.13)

c3 =
1 + w

2− α2(1 + 3w) + 2β2
, (4.14)

and is solved by

H2 =
c1

4πGc2
+

√
32πGc2c3Λ− c2

1

16πGc2
tanh

(√
32πGc2c3Λ− c2

1(N −N0)

)
(4.15)

The form of the Friedmann equation above is completely different than in the usual case. This
is due to the nonlinearity stemming from the presence of higher curvature corrections. At low
curvatures, their effect does not disappear as the most naive expectation would be and the
limit c2 → 0 of Eq.(4.15) is ill defined. The de Sitter solution is recovered at asymptotically
late times, but the preceding evolution may not approximate standard cosmology and matter
domination is lost. To cure this, we suggest removing the higher curvature corrections (c2 = 0
and consider two scenarios, one with a standard cosmological constant but modified matter
scaling, and another one in which matter non-conservation is absorbed by the cosmological
constant, which is allowed to evolve in time.

Prescription I - Constant Λ:

In the pressence of a constant Λ term the behavior of the Hubble rate is just what is expected
from Eq.(4.5). Now (4.13) is solved by

H2(a) =
8πG

3
ρ0a
−2c1 +

1

3− 2
1+wβ1

Λ . (4.16)
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Figure 4.1: Constraints on the modified equation of state for CDM and baryons scaling law
by using SNe, BAO and CMB distance priors. Radiation has been assumed to follow the
usual scaling. Only very slight deviations from the usual scaling law are allowed.

The integration constant ρ0 corresponds to the renormalised energy density at a = 1. Simi-
larly, the cosmological constant is slightly ”dressed”. The conclusion is that the observable
effect to the expansion is the modified scaling of matter density.

The modified scaling law of dark matter can be used to impose tight bounds from the
late universe observations. This has been explored in reference [245], who derived constraints
on the EoS for dark matter, taking into account experimental data both on the background
and on the perturbations. Adopting the prescription where the Newton frame sound speed
vanishes we can translate the result into our case as:

− 8.78 · 10−3 < 2c1 − 3 < 1.86 · 10−3 . (4.17)

for 99.7% C.L. bounds. Reference [245] took into account the full CMB and LSS data.
However, as we cannot deduce the perturbation evolution in these models unambiguously, it
is useful to consider constraints ensuing solely from background expansion. It turns out that
by including the latest data on SNeIa, BAO and CMB, the reached precision is only slightly
lower. The result is shown in Fig. 4.1 and corresponds to the bounds

− 17.28 · 10−3 < 2c1 − 3 < 20.50 · 10−3 . (4.18)

at 99.7% C.L.

Prescription II - Dynamical Λ: One can also consider the case that matter continuity
equation is not violated. Then the Λ-term must be responsible for the non-conservation in a
consistent system. The Hubble law can be derived analogously to the above cases and one
readily finds that it now has the form

H2 =
8πGρ

3
(

1 + 2(α1−β1)
3(1+w)

) + Λ0a
2(α1−β1) . (4.19)
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So the Λ-term acquires a dynamical behavior. In case α1 − β1 < 0 this would help with the
coincidence problems, since one could consider initial large values for Λ, which has diluted
to the presently observed scale. Note that this is different from usual dark energy approach,
where Λ is tuned to zero (or in any case to an even smaller than the value consistent with
observations) and then a new dynamical component is added to explain the acceleration.
Reference [246] has also derived this result, which can be equivalently arrived at by imposing
only the second Friedmann equation in (4.1). The first one then follows by integration, and
the dynamical Λ can be viewed as an integration constant.

In this scenario, the BBN constraint for the effective gravitational constant gives

− 0.62 < β1 − α1 < 0.20 . (4.20)

From WMAP7 measurements on the equation of state of dark energy, combined with other
cosmological data [19], we obtain an even tighter bound,

− 0.05 < β1 − α1 < 0.11 . (4.21)

This is in qualitative agreement with reference [246], where the entropic corrections were
bounded with the CMB acoustic scale.

4.3 Modifications from Quantum Corrections to the Entropy-area Law

There is evidence from string theory and from loop quantum gravity that the two leading
quantum corrections to the area entropy-law are proportional to the logarithm and the inverse
of the area [247, 248]. Reference [239] derived the Friedmann equation from an underlying
entropic force taking into account quantum corrections to the entropy formula. We slightly
generalize their final result (Equation (25) in [239]) by allowing multiple fluids (labeled i)
with constant equations of state wi and a cosmological constant, and we also allow for spatial
curvature:

H2 +
k

a2
=
∑
i

[
8πG

3
− 8β(1 + 3wi)G

2

9(1 + wi)

(
H2 +

k

a2

)
− 2γ(1 + 3wi)G

3

3π(5 + 3wi)

(
H2 +

k

a2

)2
]
ρi

+
Λ

3

[
1− β

π
G(H2 +

k

a2
) log a+

γ

4π2
G2(H2 +

k

a2
)2

]
. (4.22)

As seen in the previous Section, there is a problem recovering the usual evolution at
low curvature if we include the high curvature correction proportional to γ. This can be seen
easily also in this case. Defining the shorthand notations

Sβ ≡ −
8βG2

9

∑
i

1 + 3wi
1 + wi

ρi − β
GΛ

3π
log a , (4.23)

Sγ ≡ −
2γG2

3π

∑
i

1 + 3wi
5 + 3wi

ρi + γ
GΛ

12π2
, (4.24)

the solutions for the Hubble rate may be written as

H2 +
k

a2
=

1− Sβ
2GSγ

±
√

1− 12πG2ρSγ
2GSγ

, (4.25)
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where the total matter density is denoted by ρ =
∑
ρi. It is obvious that in the limit where

the corrections tend to zero, we do not recover standard cosmological evolution. Thus the
higher order corrections here suffer from a similar problem as we encountered in the previous
Section.

Therefore we set γ = 0 and consider only effect of the leading logarithm correction to
the entropy, proportional to β . The solution for the Hubble rate can then be written as,
neglecting the cosmological constant,

H2 +
k

a2
=

8πG

3
ρ

[
1 +

8βG2

9

∑
i

(
1 + 3wi
1 + wi

)
ρi

]−1

. (4.26)

Thus, the corrections occur near the Planck scale. If β is large enough this can support
inflation since the RHS tends to a constant when matter is relativistic and wi = 1/3 for all
species i. Again, we can constrain this from the effective G at BBN. It is interesting to note
that the form of the entropic Friedmann equation assumes the same form as in the previous
Section, where the derivation was quite different, the underlying physical assumptions leading
to a (non-)conservation and apparently different form of the force law.

From (4.26), the effective variation of the Newton’s constant is now given by

δGN/G =
1

1 + 4βG2

3 ρBBN
− 1 ≈ −4

3
βG2ρ . (4.27)

Using (4.9) for the radiation density at nucleosynthesis and proceeding analogously to Section
4.2.1, we find that the BBN bound on the magnitude constant β is |β| . 2.7 ·1035, translating
to

|
√

8πGβ| < 0.0042 1/GeV . (4.28)

Again it is clear that BBN is not efficient to constrain the corrections. Furthermore, since
the scale of inflation is below the Planck scale, we have to consider very large values of β.
However, from considerations of loop quantum gravity and string theory the natural value
for β is of order one. Considering such values, inflation takes place at the Planck scale, where
we cannot trust the perturbatively entropy-area law, expected to hold only at the limit of
large horizon size.

4.4 Dark Energy from a Generalized Entropy-area Law

In the following we consider the possibility of infrared modifications to the large-scale behavior
of gravity. Such can ensue from corrections to the S ∼ A relation that grow faster than A.
Among such is the volume correction that scales as ∼ A3/2. Interestingly, corrections of this
type imply, within the entropic interpretation of gravity, a modified Newton’s law which may
explain the galactic rotation curves without resorting to dark matter [249]. This motivates
us to study whether we may generate modified gravity at the largest scales in such a way
that we would avoid the introduction of dark energy field or a cosmological constant.

For this purpose, we consider the area-entropy law of the form

S =
A

4`2P
+ s(A) , (4.29)
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where the function s(A) represents the quantum corrections and `2P = G~/c3. We assume
that A = QN , where Q is a constant to be determined, and that the entropy changes by one
fundamental unit (corresponding to unit change in the number of bits on the screen with
radius R) when ∆r = η~/(mc), r being the comoving radial coordinate. Then the first law of
thermodynamics together with the equipartition of energy leads to the modified Newtonian
law of gravitation3

F = − Q2c3Mm

2πkB~ηR2

(
1

`2P
+
∂s

∂A

)
= −GMm

R2

(
1 + 4`2P

∂s

∂A

)
, (4.30)

where in the second equality we made the identification Q2 = 8πkBη`
4
P . Let us further

assume the power-law correction

s(A) =
4πσ

n

(
ar

`P

)2n

∼ An . (4.31)

This type of parametrization for entropic gravity effects has been recently considered by other
authors [251]. Taking into account that in the cosmological context the active gravitational
mass is given by the Tolman-Komar mass (M = 4π

3 (ρ+ 3p)a3r3 for a FRW metric), and that

the R = ar = 1/
√
H2 + k/a2, we obtain the Friedmann equation

H2 +
k

a2
=

8πG

3

∑
i

[
1 + σ

(1 + 3wi)

1 + 3wi − 2n

(
1

`2P (H2 + k
a2

)

)n−1 ]
ρi . (4.32)

Not surprisingly, the possible infrared corrections, n > 1, are precisely those which could
be significant in cosmology at late times. The nonperturbative form of s(A) is of course
is unknown, but the volume correction is known to be given by n = 3/2, so n > 1 is not
something to exclude a priori.

In the spatially flat case, if the energy density is dominated by a fluid with the EoS w
and the corrections dominate over the standard term in (4.32), the expansion is described by
the effective EoS

weff =
1 + w

n
− 1 . (4.33)

Thus a matter dominated universe accelerates given n > 3. With larger n, the effective EoS
is more negative, but phantom expansion can be achieved only when w is itself negative. The
exact evolution of weff including the effects of possible spatial curvature is shown in Figure
4.2.

In order to obtain the bounds on the parameters arising from the modified Friedmann
equation, a suitably modified version of CMBeasy [252] was employed together with a MCMC
code, taking into account astronomical data from baryon acoustic oscillations [242], super-
novae [163] and cosmic microwave background [19]. The results are displayed in Figure 4.3
and Table 4.1. Due to the geometric nature of the modifications, a possible curvature of the
spatial Sections was allowed. This revealed a preference towards slightly closed universes,

3In Ref.[250] it was instead assumed that the number of bits is directly proportional to entropy, which is not
compatible with our assumption A = QN . From the former assumption follows instead F = −GMm/(R2 +
`2P s(A)/π).
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Figure 4.2: Effective equation of state for the generalized entropy-area law DE. The lines
correspond to an open, flat and closed universe with ΩS = 0.7 and n = 2.5. Equation (4.33)
would give w = −0.6 for this case.

All BAO CMB SNe

h 0.68± 0.02 − 0.58± 0.06 −
n 3.8± 0.7 > 2.9 − > 3.0

ΩS 0.69± 0.02 − 0.71± 0.12 0.76± 0.21

Ωm 0.29± 0.02 0.27± 0.05 0.33± 0.13 0.39± 0.10

Ωk 0.012± 0.005 − −0.04± 0.05 −0.16± 0.24

Table 4.1: Maximum likelihood values and 1 sigma error bars from the constraints of Section
4.4. Note that Ωk = 1− Ωs − Ωm is a derived parameter.

which might be due to the appearance of k in the r.h.s. of (4.32). Relatively lower values of
n are favoured with respect to higher ones because higher values reproduce a total equation
of state which is too close to −1. Note also the existence of degeneracies in the individual
datasets, which are broken by the combined constraints.

Table 4.2 shows the results of model comparison with ΛCDM including the Bayesian
and the Akaike criteria given by −2 logLmax+p log d and −2 logLmax+2p respectively, with
p the number of free parameters and d the number of experimental data points. Eventhough
a cosmological constant is favoured in all cases, the values of χ2 are very similar and most
of the difference in these cases is due to the additional parameter n in the entropy-corrected
model.
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Figure 4.3: Bounds on parameters for the generalized area-entropy law DE using Sne (blue),
CMB (orange), BAO (green) and the three combined datasets (gray). Note that closed
universes (Ωm + ΩS > 1) are slightly preferred in this model. Entropic corrections gave
χ2
S = 533.28, slightly higher than the value obtained for a similar MCMC for ΛCDM with
χ2

Λ = 532.34.

S(A) Λ

χ2 533.28 532.34

χ2/d.o.f 0.956 0.952

Bayesian 558.61 551.31

Akaike 541.28 538.32

Table 4.2: Model comparison according to different criteria.
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4.5 On the Evolution of Perturbations

Lue, Roman Scoccimarro and Starkman [253] have shown that by assuming the Jebsen-
Birkhoff theorem [254] it is possible to deduce the evolution of the spherical overdensities in
a dust-filled universe given the background evolution. It is not clear to us whether the entropic
gravity obeys the Jebsen-Birkhoff theorem. Therefore we did not include the constraints from
perturbations into the likelihood analysis of Section 4.4.

We will take this approach, which was first developed to study DGP and related models,
as a first approximation to gain insight into the clustering of matter in entropic cosmology.
The perturbation evolution equation can be derived by tracking the surface of a star in a
Schwarzchild metric embedded in the background of FRW, where the expansion is given
by some gravity theory deviating from Einstein’s GR. At linear order, the density contrast
evolves as

δ̈ + 2Hδ̇ =

(
2Ḣ +

Ḧ

H

)
δ . (4.34)

If the same background expansion is due to a smooth dark energy component, the growth of
perturbations is governed by

δ̈ + 2Hδ̇ = 4πGρMδ . (4.35)

The difference is thus only the source term in the RHS of Eq.(4.34) due to the clumpiness
of the effective fluid, whereas with smooth dark energy only the matter density acts as a
gravitational source in the RHS of (4.35). This also determines the behavior of the metric
perturbations, which can be probed by various observations, in particular weak lensing and
ISW. Following reference [253] one may then find that

∇2

a2
Φ = Ḣδ , (4.36)

∇2

a2
Ψ = −

(
2Ḣ +

Ḧ

H

)
δ , (4.37)

showing that the entropic corrections can source the temporal and spatial potentials differ-
ently, similarly to the effect of anisotropic stress. This is an interesting prediction as it allows
to distinguish the possible entropic origin of acceleration from other dark energy models (e.g.
quintessence).

As an example, we consider the power-law parametrization (4.31) presented in the
previous Section. The growth rate f of the perturbations can be defined as

f ≡ d log δ

d log a
. (4.38)

Asymptotically, when the effective EoS is given by (4.33), the growing solution to the evolu-
tion equation (4.34) correspond to growth rate

f =
3

2n
, (4.39)
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Figure 4.4: Growth of structure in entropic cosmologies. Top left: Coefficient of δ in the
r.h.s of (4.34) (thick lines) and (4.35) (thin lines) for some values of n. Top right: Time
evolution of δ normalized to the ΛCDM value. Bottom left: Evolution of the growth factor
(4.38) obtained using the modified equation (4.34) (thick lines) and the usual one (4.35)
(thin lines). Data points correspond to Table 1 in Ref. [132]. Bottom right: Anisotropic
stress caused by the modified gravitational potentials (4.36,4.37). All lines correspond to flat
universes with Ωm = 0.3, ΩS = 0.7.

which dominates at late times if n > 9/4.4 As n increases, the decay of perturbations becomes
less rapid, and when n → ∞, the background is de Sitter and the matter density is frozen.
In dark energy cosmologies described by (4.35), the solution with growing δ is absent and
the transition behavior, which is relevant to observations, is different. The growing solution
(4.39) corresponds asymptotically to Φ,Ψ ∼ ap, where p = 2 − 9/(2n) if 0 < n < 9/4 and
p = 0 if n > 9/4. Thus we expect that the gravitational potentials will tend asymptotically
to a constant value if the present acceleration stems from entropic nature of gravity.

Numerical solutions for the full evolution of perturbations (4.34, 4.36, 4.37) are plotted
in Figure 4.4. Table 4.3 shows the numerical values of the growth factor (4.38) at a = 1 and
50, together with the limit previously described. Discrepancies occur for the cases with low
n, which have less negative e.o.s. and need longer time to reach the limit. The growth of

4The other solution f = 3/n− 2 is a decaying mode for the observationally allowed values of n, See Table
4.2.
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n a = 1 a = 50 a→∞
2 0.326 -0.374 -0.5

4 0.390 -0.359 -0.375

6 0.460 -0.246 -0.25

10 0.533 -0.149 -0.15

Table 4.3: Numerical and asymptotic values of the growth factor f .

inhomogeneities can be enhanced or damped depending on the value of n. The weakening
of gravity responsible for the acceleration is reflected on smaller scales in the lower value of
the r.h.s. factor of (4.34) responsible for gravitational instability. However, that term can
become larger than 4πGρm around the beginning of the acceleration due to the variation of H
through its time derivatives.5 This effect can easily overcome the weakening of gravity if n is
large enough (more pronounced transition), leading to higher values of δ. The enhancement
effect is also responsible for the resulting anisotropic stress due to the same factors appearing
in (4.34) and in (4.37).

4.6 Discussion

Rather than trying to guess the fundamental underlying mechanism describing the micro-
structure of space time, this Chapter has described some approaches to address simple models
of modified gravity inspired by the entropic gravity proposal. These models were argued
to introduce parametric modifications of the Friedmann equations, which can have been
constrained through their effects on the universe expansion at early and late times

We found that the higher order curvature corrections, motivated by quantum effects,
lead to an inflationary graceful exit problem and thus can be excluded, at least in the sim-
plest scenarios. In the surface term approach of Section 4.2, we identified the parameter
combinations (4.3) that can be constrained by observations. There c1 quantifies the lower
order and c2 the higher order contributions. We obtained

−17.28 · 10−3 < 2c1 − 3 < 20.50 · 10−3 ,√
|8πGc2| < 0.02 1/GeV .

from late and early universe constraints, respectively. It was also observed that in two quite
different approaches, the higher order corrections lead to a similar expansion law that predicts
inflation in the early universe. However, the introduction of a cosmological constant changes
the character of the Friedmann equation changes and matter domination is severely modified
if Λ, c2 6= 0 simultaneously. In an alternative prescription assuming c2 = 0 and retaining the
cosmological matter conservation laws, an estimate for the parameters can be given as

β1 − α1 = 0.02± 0.08 . (4.40)

5Ref. [253] argue that slower growth of inhomogeneities follow from the acceleration condition. However,
they consider a Friedmann equation which is locally H2 ∼ ρn which is inequivalent to (4.32).
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4.6. Discussion

In the quantum corrected approach discussed in Section 4.3, the leading logarithm correction
to the entropy-area relation was shown to be constrained by BBN in a similar way, and the
following inverse area correction was the cause of the graceful exit problem.

In addition, we studied a phenomenological power-law correction to the entropy formula.
The addition of a term ∝ An can produce accelerating expansion in the late universe for
certain values of n. Combining the available data to bound the power of the correction, we
obtained

n = 3.8± 0.7 . (4.41)

We may go significantly further if the evolution of spherical metrics can be argued to depend
only on the amount of enclosed matter, as it is the case within General Relativity. Then the
features of linearized structure are captured by the three equations (4.34,4.36,4.37), which
predict a growth factor and evolution of the gravitational potentials that is different from
the general relativistic case.

The origin of the thermodynamical properties of space-time remains mysterious. Even
in that case, simple modified theories of gravity based on the entropic gravity proposal can
be motivated, constructed and explored to a certain extent using cosmological information.
Certain modifications, such as postulating a different entropy-area law can provide mecha-
nisms for dark energy and generically have observable consequences, although there are a
number of assumptions that are necessary to extract predictions from the theory. The study
of background evolution and comparison with geometrical probes was possible by deriving
Friedmann equations from the Newtonian force. Similarly, a prescription for the growth
of structure could be obtained only after assuming the Jebsen-Birkhoff theorem. Although
these methods are valid for General Relativity, there is no guarantee that they will remain
correct in more general theories, and the lack of a complete formulation makes it difficult to
check these assumptions, if possible at all. Eventually, a wholesome approach to describe the
space-time degrees of freedom would be necessary to properly address the full set of predic-
tions. Only this may ultimately validate or rule out the concept of entropic gravity and its
possible variations.
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Chapter 5

Standard Matter and Scalar Fields:
Disformal Quintessence

You can’t just have stuff that is free and
escapist, you have to have stuff that is
confrontational as well. You need stuff that is
mystical but you need the realism too.

Irvine Welsh1

C
osmological observations reveal that a mysterious constituent with negative
pressure, so called Dark Energy (DE), accounts for about 70% percent of
today’s mass energy budget and is causing the expansion of the universe to
accelerate [19]. A major challenge in present day cosmology is to discover
the physical nature of Dark Energy. The quest to find its precise nature,
whether as an exotic field or a modification of General Relativity, is on-

going and many possibilities have been explored [9, 25]. The phenomenologically simplest
Cosmological Constant is however theoretically problematic [23]. Quintessence provides a
dynamical alternative to the static cosmological constant. It can track the background en-
ergy density, more naturally resulting in similar orders of magnitude for the Dark Energy
and matter energy densities today. However, some mechanism is necessary to end the scaling
era and initiate the acceleration. Several possibilities have been considered, such as intro-
ducing a suitable bump in the potential [255], coupling the field to the Gauss-Bonnet term
[256, 257], coupling the field to other matter components [49, 258], considering non-canonical
Lagrangians [259], or introducing several scalar fields [260]. In the following, a disformal
relation [62] is applied for this purpose.

Disformal relations have frequently appeared in gravitational theories alternative to dark
matter, such as TeVeS [60] or other covariant Modified Newtonian Dynamics formulations
[261]. This is necessary to produce gravitational lensing, as light has then to propagate on a

1Interview by Alan Black for 3:AM Magazine, 2004
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different causal structure than gravity. Disformal relations have also been used to construct
inflationary models [69], and are indeed the key to varying speed of light theories that attempt
to solve the horizon problem [262, 263]. They generalize the conformal transformations (i.e.
local rescalings of the metric), which are well known and have a number of applications,
such as relating the simplest scalar-tensor theories to General Relativity with a scalar field
entering the matter sector [264]. One can then consider the features of the more general
transformation as a model building tool and to examine extended sets of relations between
different theories (cf. Chapter 6).

Here a preliminary step is made by exploring one of the simplest possible scenarios:
a canonical scalar field self-coupled through a disformal metric. This allows us to uncover
many relations between seemingly disconnected Dark Energy models. If only the potential
term is considered, one recovers a tachyon or a Chaplygin gas. When the kinetic term is
included, some other previously considered models can be recovered in certain limits, as
we will discuss in Section 5.1. The rest of the Chapter is devoted to the study of a simple
possibility, disformal quintessence, which can act as a viable DE model. Section 5.2 is devoted
to study of this model, and contains the main results regarding cosmology. We describe in
detail the background evolution of this model in Section 5.2.1. Particular attention is given
to the transition mechanism that provides an exit from the scaling era. The details of this
transition depend on the two parameters of the model, and thus they can be constrained by
cosmological data. The evolution of perturbations is considered in Section 5.2.2 in order to
compute the CMB and matter power spectra. Armed with these solutions,a Markov Chain
Monte Carlo analysis of the model is performed in Section 5.2.3, combining different geometric
and dynamical data. A broad range of the parameter space is found to be compatible with
observations, but the region corresponding to a shallow slope of the exponential potential or
the disformal factor can be observationally excluded. The model is discussed in Section 5.3.

5.1 Dark Energy from the Disformal Relation

A generic scalar field Lagrangian minimally coupled to gravity is a function of two variables,

L = L(φ,X) . (5.1)

It can be expanded as a series in the kinetic term X = −1
2g
µνφ,µφ,ν

L = L(φ, 0) + L,X(φ, 0)X +
1

2
L,XX(φ, 0)X2 + . . . (5.2)

The first term corresponds to the potential and the second term equals one if canonically
normalized. The coefficient of the third term has units 1/M2 and is suppressed by a factor
(H/M)2 for cosmological applications. Unless the prefactor is huge, this term is negligible
in the late universe, and a canonical scalar field should be an adequate description of almost
any natural case. However, this can be avoided if L is chosen such that the coefficients in
the formal series (5.2) are suitably amplified, e.g. by their dependence on the field.

Let us consider the following generalization of the conformal transformation

ḡµν = A(φ)gµν +B(φ)φ,µφ,ν (5.3)

defined by a scalar field φ. Equation (5.3) constitutes the most general relation between met-
rics that preserves causality and covariance and is defined through φ and its first derivatives
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only [62]. Note that the relation (5.3) becomes meaningful only after we have specified the
coupling to gravity. Here it will be considered that the gravitational sector is given by the
Einstein-Hilbert term of the unbarred metric, and matter couples to the unbarred metric as
well.

Throughout the present Chapter, quantities computed or constructed using the metric
(5.3) are denoted “barred” or “disformal”. Quantities constructed using gµν are denoted as
“unbarred”, and do not depend on the scalar field. The dependence on the scalar field will
be also omitted from the conformal and disformal factor A,B ≡ A(φ), B(φ).

5.1.1 Disformal Dark Energy

The simplest theory where (5.3) appears to be relevant is

SΛ̄ = −
∫
d4x
√
−ḡΛ = −

∫
d4x
√
−gA3/2

√
A− 2BXΛ , (5.4)

where the relation between the metric determinants (5.11) has been used. Thus the cosmo-
logical term of a disformal metric is a tachyon in a constant potential. Computation of the
energy-momentum tensor (C.2) w.r.t. the unbarred metric reveals that ρ = A5/2 Λ√

A−2BX

and p = A3/2Λ
√
A− 2BX. The above action therefore corresponds to a cosmic component

obeying the equation of state

p = −A4(φ)
Λ2

ρ
. (5.5)

If the conformal factor A is constant, the equation of state (5.5) corresponds to Chaplygin
gas, which has been applied in cosmology in attempts to unify dark matter and Dark Energy
[265]. Our result shows that this rather exotic fluid can be obtained in an extremely simple
way from a cosmological constant term by taking into account a possible disformal relation
to the gravitational metric.

The Λ term describes the potential of the tachyon, and therefore it seems reasonable to
consider it as a field dependent term V (φ). A straightforward generalization of this scheme
is to include also a kinetic term. In the case of canonical kinetic term we obtain the model

Sφ =

∫
d4x
√
−ḡ
(ε

2
ḡµνφ,µφ,ν − V (φ)

)
. (5.6)

The sign of the kinetic term ε is kept arbitrary, as it does not complicate the analysis. The
case ε = 1 was considered in [266] as a variation of the quintessence scenario. The effect
of the disformal relation is then to end the scaling era and begin the accelerated expansion.
The canonical field in the disformal metric assumes the rather unappealing form in terms of
the unbarred metric

Lφ = A
3
2

(
εX√

A− 2BX
+
√
A− 2BXV (φ)

)
. (5.7)

For a derivation of this expression and a variation of the model, see Section 5.1.2. Then,
expansion in the kinetic energy follows

Lφ = −A2V − AX(ε−BV ) − 1

2
BX2(2ε−BV ) (5.8)

− B
2X3

2A
(3ε−BV ) +

5B3X4

4A2
(2ε−BV ) + · · ·
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ε B(φ) V (φ) Model Remarks

0 0 Λ Cosmological constant w = −1

1 0 V (φ) Quintessence w > −1, [41, 42]

-1 0 V (φ) Phantom quintessence w < −1, [267]

0 > 0 ±Λ (Anti-)Chaplygin gas Eq. 5.4, [265]

0 1 V (φ) Tachyon condensate [268, 269]

-1 A(φ) 0 K-essence‡ A = B, [259, 270]

-1 eβφ 0 Dilatonic ghost‡ [271]

-1 - - Disformal phantom
1 > 0 V (φ) Disformal quintessence [266], Section 5.2

‡ Assuming that the expansion (5.8) is consistent to second order in X.
The equivalence is at the level of the Lagrangian rather than dynamically,
when the solutions to the equations are considered.

Table 5.1: Disformal Dark Energy models obtained from the action (5.6). The first three
models do not use a disformal transformation. The second set contains examples which have
been thoroughly studied in the literature. Disformal quintessence will be considered further
in this work, while the phantom version is left for further studies. All models are purely
disformal (A = 1) unless explicitly mentioned. A modification to obtain further variations is
briefly discussed in subsection 5.1.2.

Due to the form of the expansion, all terms after first order in X are of the form XnBn−1A2−n

[pnε−qnBV ] with pn, qn rational numbers. The argument following (5.2) can be circumvented
if the coefficients are adequately enhanced so that the expansion is not valid anymore. One
possibility is to choose an exponential form for the disformal function B with A = 1.

As it has been shown, the disformal relation has a very simple connection with the
Chaplygin gas. It turns out that the theory given by (5.6,5.7) can encompass a broad range
of Dark Energy models with non-minimal kinetic term through different choices of ε, B,
V and A. Some variations are shown in Table 5.1. Since it contains derivatives of φ, the
inclusion of the disformal metric ḡµν makes the scalar field dynamical even in the absence of
a canonical kinetic term. Disformal quintessence will be discussed in depth in section 5.2.

5.1.2 A Variation of the Model

By contraction with (5.3), the inverse disformal metric can be shown to be

ḡµν =
1

A

(
gµν − B

A− 2BX
φ,µφ,ν

)
. (5.9)

Then we see that

X̄ =
X

A− 2BX
. (5.10)
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The determinant of the disformal metric is (for a method to obtain the result see Appendix
C of Ref.[60])

√
−ḡ = A2

√
1− 2

B

A
X
√
−g . (5.11)

Using these formulas the form (5.7) follows immediately.

One may also consider an alternative prescription for the canonical field (5.6). The
kinetic term is written there is terms of the inverse metric as X̄ = −1

2 ḡ
µνφ,µφ,ν . The

alternative formulation employs the metric in the combination X̂ = −1
2 ḡµνφ

,µφ,ν . This
is a consistent but not the minimal prescription, since depending on the viewpoint, it is
equivalent to 1) mixing the two metrics (since the derivative indices in (5.11) are raised with
the unbarred metric), considering non-canonical field (as the unbarred metric can be barred
by introducing field combinations) or defining the kinetic energy in terms of differentials with
respect to one-forms (and not the coordinate vector as usually). Now X̂ = X(1−2BX), and
in terms of the matter metric, this Lagrangian corresponding to this model is

L̂φ = A
3
2

√
A− 2BX [X(1− 2BX)− V (φ)] . (5.12)

We shall not consider this variation further here.

5.2 Disformal Quintessence

We will now explore the model given by action (5.6) and (5.7) with ε = 1. For the sake
of simplicity, we will restrict to the purely disformal case A = 1. The dynamical equations
derived in 5.2.1 and 5.2.2 hold for any choice of B and V , but we will rather focus on an
exponential dependence

B = M−4
p eβ(φ+φx)/Mp , (5.13)

V = M4
p e
−αφ/Mp , (5.14)

for concreteness. The model parameters are chosen so that at early times the disformal
features are negligible and the field behaves as normal quintessence. The form for V ensures
the existence of scaling solutions in this regime if α > 2 [272]. The exponential form for B
allows the disformal features to become relevant without introducing a new scale.

5.2.1 Background Evolution

For a flat FRW metric, the energy and density pressure in the Einstein frame read [266]

ρ =
1√
L

(
ε
φ̇2

2L
+ V

)
(5.15)

p =
√
L
(
ε
φ̇2

2L
− V

)
(5.16)

where the lapse function

L ≡ ḡ00

g00
= 1−Bφ̇2 , (5.17)
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measures the relative time flow in the barred metric (5.3) relative to the unbarred one.2 The
disformal factor

D = Bφ̇2 , (5.18)

is a measurement of the deviation with respect to canonical quintessence.
The field equation can be written in a form analogous to a single harmonic oscillator

with coefficients that depend on φ, φ̇

φ̈+ 3
F
M

Hφ̇+
P
M

= 0 . (5.19)

The analogs of mass, friction and potential terms can be written in terms of the disformal
factor and the lapse as

M = ε(1 +
1

2
D) + LBV , (5.20)

F = L[ε(1− 1

2
D) + LBV ] , (5.21)

P = [ε
3

4
φ̇2 +

1

2
LV ]B,φφ̇

2 + L2V,φ . (5.22)

In addition to the disformal factor (5.18) and the lapse (5.17), the dimensionless disformal-
potential factor BV offers yet another quantitative estimate of the disformal properties

BV = e[(β−α)φ+βφx]/Mp . (5.23)

We assume that the field has reached the tracking solution with before the time of Big
Bang Nucleosynthesis. Then the field contributes a constant fraction of the energy density
(Early Dark Energy) which depends on the effective equation of state w and the slope of the
exponential potential α [9]

Ωede =
3

γ2
(1 + w) . (5.24)

This behavior lasts while D � 1 and BV � 1. If the field is tracking the matter density and
D ≈ 0, then V ∼ 1

2 φ̇
2 and both conditions hold simultaneously. The disformal factor evolves

as

Bφ̇2 = 2
β
α
[
ΩφρM

−4
p

]1− β
α ∝ a3(1− β

α
) , (5.25)

and will be a growing function of time only if β > α, a condition necessary to push the field
out of the attractor. The parameter φx produces a shift in the transition time and hence Ωφ

is a monotonous growing function of it. In the following we will discuss the model in terms
of α, β and Ωφ.

When the disformal factor Bφ̇2 becomes of order one, the time slows down in the
unbarred metric ḡ00 = −1 + Bφ̇2 (in which φ lives), and the field is pushed towards a slow
roll phase (as seen in the unbarred metric). This causes the equation of state to become
negative and source the acceleration of the universe. Figure 5.1 displays the effects of the
transition in wφ for different values of β/α. High values lead to a rapid slow down of the
field and a more negative equation of state while low values are associated with gradual

2The lapse function defined here is different than the one appearing in the ADM formalism in General
Relativity [273].
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Figure 5.1: Disformal quintessence dependence on β/α as a function of redshift (α = 10
and Ωφ = 0.7). Left: Equation of state for the field. Higher values of β/α produce sharper
transitions while low values lead to smoother ones.. Right: Speed of sound squared (see
section 5.2.2), equivalent to F/M≈ 1−D.

and longer transitions in which the field preserves a significant velocity at later times. The
evolution of the disformal factor is similar regardless of the parameters, but becomes more
clear for higher values of β/α (See Figure 5.2). The transition is associated with a maximum
and a rapid fall towards a certain value, followed by a slower reduction. The existence of
a maximum follows from the role of D in the disformal metric, which implies that D < 1
at any time. Otherwise the metric would run into a singularity and many quantities would
blow up, notoriously the energy density (5.15). Hence a slow down of the field is therefore
expected whenever D approaches unity.

No similar bound can be put on the potential disformal factor, which grows exponentially
with φ and can overcome the small velocity and reach large values after the freeze out. It
can be seen how the change of slope in BV roughly corresponds to the transition due to the
slow down of the field. This factor represents the dominant contribution to M, increasing
the inertia term in the field equation 5.19. Despite the disformal factor is restored to very
small values after the transition, the dynamics of the field remain affected by the large value
of BV .

If β � α, the disformal factor is much smaller than one, except for some interval around
the freeze-out transition. An expansion to first order in D can be hence used to gain some
intuition about the model. Let us regard the terms in (5.19) in the light of this expansion.
For the friction term we get a simple correction with respect to the usual quintessence case
(F/M = 1)

F
M

= 1−D +O(D2) . (5.26)

Taking into account the exponential dependence on the field, the expansion of the potential
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Figure 5.2: Disformal functions D, BV for different β/α as a function of the scale factor
(α = 10 and Ωφ = 0.7). Before the transition both lines evolve together. The disformal
factor D < 1 corresponds to the lower lines. The bounce avoids a metric singularity in (5.3).
The disformal-potential term BV corresponds to the lines that cross above one. This term
dominates M after the transition. Note that the evolution has been extrapolated to a = 10.

yields

P
M

=
V ′

1 +BV

[
1 + 3D 1− 2BV

2(1 +BV )

]
+B′φ̇2 1

2

3
2 φ̇

2 + V

1 +BV
+O(D2) . (5.27)

The first term reduces to the usual V,φ at early times, but it is suppressed by the BV factor in
the denominator at late times (the expression in brackets remains of order one at all times).
The second term represents the purely disformal contribution to the potential and is equally
suppressed by BV at late times. At early times, it is suppressed by B′φ̇2, which is small
until the transition by construction. With the exponential choice of the functions (5.13, 5.14)
B′ = β

Mp
B and V ′ = − α

Mp
V have opposite signs and therefore the two terms push the field

in opposite ways. The second, disformal force term is hence able to decelerate the field when
it becomes non-negligible.

Neglecting fine details from (5.27), and within our exponential model the “force” acting
on the field will flip sign when

D ∼ α

β
. (5.28)

The contribution from the disformal factor can be much larger than V,φ if β � α, which is
the ultimate cause for the transition to occur so rapidly. Since it is proportional to D ∝ φ2,
it decreases as the field slows down and eventually the usual term will come to dominate
the force when (5.28) is fulfilled again (Figure 5.2 shows that the disformal factor stabilizes
approximately around this value). As the transition happens, BV increases and strongly
suppresses the force term acting on the field. The later and softer slow down would then be
driven by the friction term (5.26), which does not suffer from this suppression.
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Figure 5.3: Field equation of state at present time as a function of β/α for different values
of α. There is a clear trend towards wφ − 1 + α/β unless α or β/α are very low. Models
with early dark energy deviate from this trend because the transition is not complete when
Ωφ ≈ 0.7 is reached.

It is possible to compute the equation of state from equations (5.16, 5.15) to first order
in φ̇2/V and D

w ≈ −1 +D +
1

2
φ̇2/V ≈ −1 +D , (5.29)

where in the last equality potential domination was assumed. according to (5.28) we expect
that w0 + 1 ∼ α/β. Figure 5.3 confirms this trend for a wide range of parameters. For larger
amounts of early Dark Energy (low α) or slow transitions (low β/α) the freeze out does not
finish before the required Ωφ is reached. The properties of the accelerated expansion are
therefore linked to the quotient β/α. Apparently the only role of α is to regulate the amount
of early Dark Energy and therefore shift the transition time to compensate the time interval
necessary to achieve Ωφ today.

5.2.2 Cosmological Perturbations

The perturbations were studied in the synchronous gauge [274]. The relevant equations are
the same as in Ref. [275] were p is given by the Lagrange density (5.7). With the defini-
tions from the previous section, we can write the energy density and velocity perturbation
introduced by the disformal field as

δρφ = L−5/2
[
Mφ̇ ˙δφ+ Pδφ

]
, (5.30)

(ρ+ p)θφ = − F
L5/2

k2

a
φ̇δφ , (5.31)

where δφ ≡ φ(~x, t)/φ(t). The scalar field equation obeyed by such perturbations can be
written as

δ̈φ+

[
3H +

Ṁ
M

]
˙δφ+

[
F
M

k2 +m2
φ

]
δφ+

1

2

F
M

ḣkφ̇ = 0 . (5.32)
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Herre hk is the interaction with gravity introduced through the covariant derivative and the
field mass m2

φ generalizes the V,φφ term. It is given in terms of the background valuated
partial derivatives of (5.7) as

m2
φ =

1

M

[
(φ̈+ 3Hφ̇)p,Xφ + ṗ,Xφφ̇+ p,φφ

]
. (5.33)

As in the homogeneous limit, the smallness of the disformal factor ensures no significant
departure from the canonical quintessence case at early times.

The speed of sound characterizes the propagation of fluctuations within the field. For
the purely disformal case it is given by [266]

c2
φ =

F
M

= L1 +BV L −D/2
1 +BV L+D/2

. (5.34)

The allowed values of BV and D bound its value between 0 and 1, see Figure 5.1. It is
very close to one before the transition, as for canonical quintessence. Therefore, the growth
of perturbations at the tracking stage will be strongly suppressed, and by the time of the
transition to slow roll the Dark Energy overdensity will be many orders of magnitude below
the matter contrast. As for usual quintessence, the finite amount of early Dark Energy will
increase the expansion rate and damp the formation of structure in all epochs. This departure
of matter domination is reflected in a slope in the Newtonian gravitational potentials and a
slight enhancement of the first acoustic peaks on the CMB.

The transition affects the terms involved in (5.30-5.32). It flips the sign of P at freeze
out and increases its value several orders of magnitude. This variation is compensated by a
reduction of δφ, which mantains the velocity and energy density perturbations at a similar
level, as can be seen in Figure 5.4. The speed of sound drops below unity for a certain time
and then stabilizes with a value that depends on β/α, as can be seen in Figure 5.1. Although
this enhances the clustering properties of the disformal field, the inhomogeneities in the fluid
can grow no faster than the matter ones (for which the speed of sound is zero) and are very
suppressed w.r.t. matter inhomogeneities. Therefore, they are completely subdominant.

The main departures from ΛCDM are caused by the different equation of state and
transition times, i.e. by purely background physics. Lower values of β/α render the transition
slower, but a longer expansion period is required to achieve the same density fraction. Both
effects shift the angular scales of the CMB and affect the Integrated Sachs Wolfe signal.
Higher values of β/α mimic the Λ behavior at late times. If the value of α is also high (i.e.
negligible early DE) matter domination is recovered and disformal quintessence becomes very
similar to the standard model.

5.2.3 Observational Constraints

A Markov Chain Monte Carlo simulation was used to obtain constraints on the parameter
space of the theory by comparing with WMAP 7 year power spectrum data [19], supernovae
from the Union dataset [162], SDSS DR7 baryon acoustic peak position [242] and matter
power from the SDSS Luminous Red Galaxies (LRGs) sample [99]. The uncertainty in the
galaxy bias factor was treated by choosing the highest likelihood value in the range (1, 3)
within a linear model. This choice accounts for the uncertainty associated while avoiding too
large bias factors. Spatial curvature was set to zero in all the models. The upper bounds in
parameter space α ∈ (3, 20) and β/α ∈ (1.5, 30) were chosen by sensitivity considerations,
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Figure 5.4: Large scale perturbations for α = 10. Top: Dark energy power spectrum
along the scale factor (arbitrary units). Bottom: Gauge invariant potentials for the same
k−modes.
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Figure 5.6: Likelihood contours for disformal quintessence. Shaded regions correspond to
the 1 and 2-σ obtained by the full MCMC analysis while the black lines correspond to a
restricted analysis using only information from the background expansion (SNe, BAO and
CMB distance priors). The constraints in α and β/α correspond respectively to high fractions
of early Dark Energy and slow disformal transitions towards accelerated expansion.

since very little departure from Λ can be observed for large values. The lower bounds ensure
the existence of matter attractor solution for the field (α > 3), disformal transition (β > α)
and avoid computational difficulties. The simulation was performed through a modification of
the publicly available Boltzmann code CMBeasy [216, 218]. Four chains were run adding up
to 20870 accepted models. An additional MCMC using only background information (SNe,
BAO and CMB distance priors as described in section 5 of [19]) was run for comparison. The
results are displayed in Table 5.2 and Figure 5.6.

Observations are compatible with a large patch of parameter space in the α, β/α plane
and confirm the preference towards higher values of both parameters where the Λ limit can
be achieved. Constraints are tighter on α due to the cumulative effect that early Dark Energy
exerts in the growth of perturbations, as can be inferred by a comparison between the runs
using the complete and the restricted sets of observations (top plot in Figure 5.6). This
difference is likely to arise when the allowed bias factor fails to compensate the effect of early
Dark Energy to produce a good fit to LRGs data, as well as due to the effect in the third and
further acoustic peaks, as seen in Figure 5.5. The constraints on the properties of accelerated
expansion (i.e. on β/α) do not improve significantly in the full analysis because the relevant
features affect mostly distance information, encoded in SNe, BAO and CMB angular shift
measurements. Other features such as the integrated Sachs-Wolfe effect are significant only
for very low values of the parameters and do not introduce relevant differences in the region
of interest.
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5.3. Discussion

Parameter Maximum Likelihood 68% C.L.

100Ωbh
2 2.23 ±0.05

Ωmh
2 0.135 ±0.004

h 0.690 ±0.014

α 15.9 & 8.5

β/α 17.2 & 4.9

τ 0.086 ±0.015

ns 0.971 ±0.014

Amp. 2.91 ±0.015

Table 5.2: Results from the Monte Carlo Markov Chain analysis. All the usual cosmological
parameters lie within one sigma from the WMAP 7 constraints presented in [19]. Amplitude
is given by ln(1010As)− 2τ .

5.3 Discussion

Disformal generalizations of the conformal transformation have found several applications
in cosmology, particularly in the frameworks of gravitational alternatives to dark matter
and varying light speed alternatives to inflation. In this Chapter it has been shown that
the disformal relation can be also very prolific in generating alternative explanations for the
cosmic acceleration and provide new connections between models. Here we considered the
canonical scalar field action where the metric is replaced by the disformal one, i.e. we made
the substitution gµν → ḡµν in the Lagrangian. Different choices of the free functions allowed
to recover several Dark Energy models proposed in the literature, as can be seen in Table
5.1.

Disformal quintessence arises in a very simple way as an application of this substitution,
which results effectively in a non-standard self-interaction of the scalar field. This self-
interaction causes the field to accelerate the universe given exponential functions of the
field and under the condition α/β < 1 in (5.13, 5.14). Acceleration can be achieved for
models in which the Lagrangian parameters are of order Mp, due to the shift symmetry of
the exponential functions. Moreover, the exponential potential allows scaling solutions, so
practically no tuning whatsoever of initial conditions for the field is required. The model
evolution was studied considering the homogeneous limit and linear perturbations. The
dependence of the background dynamics on model parameters allows us to put constraints on
them. These become more stringent if we take into account the evolution of linear structures,
although the effects are subtle and mostly geometric in nature (i.e. depend on the background
properties of the model). A Markov Chain Monte Carlo simulation was used to obtain
constraints on the parameter space of the theory by comparing with WMAP 7 year data,
SNe from the Union dataset, baryon acoustic peak position and LRGs power spectrum from
SDSS. Small values of α can be ruled out because of the effect of early Dark Energy. On
the other hand, small values of β/α result in slow transition to acceleration, which is also
disfavored by the data. However, when both α and β/α are sufficiently large (the precise
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limits shown in Figure 5.6), it becomes very difficult to distinguish the model from ΛCDM.
These results are a first step in the exploration of the disformal relation as a way to

connect different theories and build cosmological models. Next Chapter discusses the role
of the disformal relation in Dark Energy scenarios by the introduction of couplings to other
forms of matter, using the disformal prescription gµν → ḡµν . It turns out that disformal
relations allow to relate different scalar tensor theories, and a mechanism similar to the
scalar field self coupling is able to initiate a slow roll phase when it couples to non-relativistic
matter. Furthermore, such a coupling is in agreement with local gravitational tests by means
of a disformal screening mechanism.
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Chapter 6

General Relativity and Scalar
Forces: Disformal Coupling

The only true voyage of discovery would be
not to visit strange lands but to possess other
eyes, to behold the universe through the eyes
of another, of a hundred others, to behold the
hundred universes that each of them beholds,
that each of them is.

Marcel Proust1

I
n the standard ΛCDM model of cosmology, the universe at the present day
appears to be extremely fine tuned. The energy scale of the Λ component is
about 10−30 times the most naive expectations of the theory. Generalizations
of Λ in the form of dynamical scalar fields have been proposed, whose time
evolution could more naturally result in the observed energy density today
[9]. High energy physics generically predicts an interaction between a scalar

degree of freedom and other forms of matter, which in turn could help to explain why the field
becomes dynamically important at the present epoch. There are myriad variations of such
models, but in most of them the coupling can be effectively described by a field-dependent
mass of the coupled particles. Those Yukawa-type couplings can be motivated by a conformal
relation to scalar-tensor theories, which includes also the f(R) class of modified gravity [7].

However, for any other type of gravity modification, the relation between the matter
and gravitational metric will be non-conformal. When given by a scalar field φ, the disformal
relation can be parametrized as

ḡµν = A(φ)gµν +B(φ)φ,µφ,ν , (6.1)

where commas denote partial derivatives. Considering the most general physical case, Beken-
stein [62] argued that both functions A and B may also depend upon (∂φ)2, but we will focus

1In Search of Lost Time - The Captive (1923)
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on the simpler case here. Previous applications of such a relation to cosmology include vary-
ing speed of light theories [276, 277], inflation [69], massive gravity [278], dark energy [4, 266],
gravitational alternatives to [60, 261] and extensions of [279] Dark Matter.

Such a relation can also be motivated in theories with extra dimensions, in which matter
is confined to a 3+1 dimensional brane embedded in a larger bulk space [68, 71, 72, 81–
83, 280–282]. The action for this type of theories is constructed using geometric scalars
computed out of the induced metric

ḡµν = gµν + πI,µπ
I
,ν , (6.2)

where the moduli fields πI represent the coordinates orthogonal to the brane and gµν is the
brane metric prior to the embedding, necessary to describe gravity. In the case of a single
extra dimension [68], each curvature invariant is related to a generalized covariant Galileon
Lagrangian [64, 74] with a particular form of the Horndeski free functions in (1.28). The usual
Galileon terms [70] are then obtained by assuming a flat initial metric gµν → ηµν and taking
the non-relativistic limit (i.e. lower order corrections in (∂π)2). These theories have attracted
considerable attention because they capture interesting features of higher dimensional models
such as DGP [79], including the Vainshtein screening mechanism [84].

Screening mechanisms are central to the construction of alternative theories of gravity,
as they help cover the effects of the additional field in dense environments or around massive,
compact objects. Modifications are then allowed to occur over cosmological scales of length
and energy density, while the gravitational physics operating in the Solar System are close
enough to GR to satisfy the precision tests sketched in Section 2.6. To date three possibilities
based on the conformal coupling have been explored, namely the Vainhstein, chameleon and
symmetron mechanisms [84, 85, 87]. The chameleon mechanism relies on the high mass of
the field in dense surroundings, and the symmetrons are screened in high ambient density
due to their field-dependent coupling. The Vainshtein mechanism is somewhat different, as
it relies on the non-linear derivative self-interactions of the scalar field to flatten its profile
around matter sources within the so-called Vainshtein radius, while keeping it active over
cosmological distances.

This Chapter presents results that may simplify considerably the analysis of theories
based on higher dimensional models. In Section 6.2 it is argued that by performing a dis-
formal transformation, a theory in which the gravitational sector is standard but the matter
metric is constructed disformally (6.1) can be rewritten in a form equivalent to the fourth
order covariant Galileon Lagrangian, which arises from the scalar curvature constructed out
of the effective metric (6.2) [68]. Disformally coupled theories provide an Einstein frame de-
scription of certain brane-world constructions, similar to the way in which the field dependent
coefficient of the Ricci scalar can be moved from the gravitational to the matter sector in old-
school scalar-tensor theories. In Section 6.2.2, the equations of motion are derived in a frame
in which the gravitational sector has the Einstein-Hilbert form but the matter action includes
the scalar field as prescribed by Equation (6.1). This Einstein frame description unravels a
new screening mechanism in which the coupling vanishes if the field is static and the coupled
matter behaves as non-relativistic dust. The properties of the field are discussed in Section
6.5, and some simple solutions are derived. Due to the equivalence between the disformally
coupled theory and a covariant Galileon, the disformal screening mechanism might just be
an alternative way to regard the Vainshtein effect and study its properties.
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Even in the absence of a screening mechanism, long range interactions are still phe-
nomenologically viable if they only couple the scalar degree of freedom to Dark Matter par-
ticles, which are not involved in local tests of gravity. As a concrete example to analyze the
cosmological implications of a Disformally Coupled Dark Matter model (DCDM), in which it
is assumed that Dark Matter is the only species directly coupled to the field. It is introduced
in Section 6.3 where its dynamics and observational compatibility at the background level
are analyzed. The intensity of the purely disformal coupling is approximately proportional
to the scalar field energy density ρφ, unlike in the conformally coupled case for which it is
proportional to the coupled matter density ρm. Cosmological perturbations are analyzed in
Section 6.4, including an analytic expression for the small scale effective gravitational con-
stant. The simple DCDM model enhances the growth of the coupled matter density contrast
too much to be compatible with observations, but several possibilities to render the model
viable are discussed in Section 6.4.3. Although many results would still hold if the coupling
is extended to baryons, the results of explicit computations are given for the example DCDM
model.

Throughout the present Chapter, quantities computed or constructed using the metric
(6.1) are denoted “barred” or “disformal”. Quantities constructed using gµν are denoted as
“unbarred” and do not involve the scalar field.

6.1 A Test Particle in a Disformal Metric

Let us start with the simple exercise of determining the dynamics of a point-like particle
with mass m coupled to the disformal metric (6.1). A Lagrangian density for such a system
is given by √

−ḡL̄p = −m
√
−ḡµν ẋµẋνδ(4)

D (xµ − xµ(λ)) , (6.3)

where the dot means derivative w.r.t. the affine parameter λ along the trajectory x(λ) and
the correct weight for the delta function has been taken.2 The effects from the coupling can
be seen from the barred four-velocity modulus in (6.3)

ḡµν ẋ
µẋν = Aẋ2 +B(φ,µ ẋµ)2 . (6.4)

Distances are dilated by the conformal factor A, as usual. The disformal factor B gives an
additional direction-dependent effect proportional to the projection of the four-velocity along
the field gradient. The equations of motion can be obtained by maximizing the proper time
of the particle along its path. The result is the disformal geodesic equation

ẍµ + Γ̄µαβẋ
αẋβ = 0 , (6.5)

where the barred Levi-Civita connection has been assumed to be torsion-free and such that
the metric compatibility relation holds for barred quantities, i.e. ∇̄αḡµν = 0. It can be
computed from (6.1) and written in terms of unbarred covariant derivatives of the barred
metric in a rather compact form

Γ̄µαβ = Γµαβ + ḡµλ
(
∇(αḡβ)λ −

1

2
∇λḡαβ

)
. (6.6)

2The one-dimensional definition of the delta function requires that its generalization to higher dimensions
cancels out the tensor density in the integrand δ

(4)
D (x−x0) = 1√

−g
∏
a δD(xα−xα0 ) (e.g. in spherical coordinates

δ(3)(x) = δD(r)δD(θ)δD(φ)/r2 sin θ). Hence it does not matter whether
√
−g or

√
−ḡ is used in the integration,

as long as the delta function is consistent with it.
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No assumption about the dependence of A,B has been done to obtain the above expression,
which remains valid if A,B depend on X. Note that the difference between the two connec-
tions is a tensor, as expected. Appendix D.1 shows the expansion of (6.6) in terms of A,B
and its derivatives, which is rather lengthy to be included here.

The stress energy tensor w.r.t. the unbarred metric can be computed by variation of
(6.3) with respect to gµν

Tµνp ≡
2√
−g

δ
(√
−ḡ L̄m

)
δgµν

= Am
ẋµẋν√
g ˙̄x2

δ
(4)
D (xµ − xµ(λ)) . (6.7)

If the gravitational metric is the unbarred one, this is the energy momentum tensor sourcing
the space-time geometry.3 This result can be used to express the particle Lagrangian in
terms of the energy momentum tensor

√
−ḡL̄p = Tp +

B

A
φ,µφ,νT

µν
p = ḡµνT

µν
p . (6.8)

The above expression gives an effective form for the coupling to matter. It shows how the
kinetic term of the scalar mixes with the matter content, a very important property that lies
at the heart of disformally coupled theories, including the disformal screening mechanism
explored in Section 6.5.

6.2 The Zoo of Disformally Related Theories

The previous Section presented a simple example of a theory in which the matter Lagrangian
is constructed using a disformal metric (6.1). Although no gravitational sector was specified,
the simplest possibility is to assume that it is given by the Einstein-Hilbert form computed
out of the unbarred metric gµν . In this case, Einstein equations retain the usual form and are
sourced by the energy momentum tensor (6.7). We shall refer to disformally coupled theories
in which the gravitational sector is standard as being expressed in the Einstein Frame (EF),
in analogy with old-school scalar-tensor theories.

More generally, one wishes to know what kind of theories can be constructed using two
metrics that are disformally related and study the relations between them, in analogy to
the equivalence between scalar-tensor theories minimally coupled to matter and conformally
coupled theories with a standard gravitational sector but with a non-minimal coupling of
matter to the scalar field. The starting point is a general bi-metric theory where the gravity
sector has the EH form, but with unspecified forms for the gravitational and matter metrics

S =

∫
d4x

(√
−gGR

[
gGµν
]
−
√
−gMLm

(
gMµν , ψ

))
. (6.9)

Playing with the disformal relations between gGµν and gMµν allows one to write it different
frames. Besides the Einstein frame, an obvious possibility is to consider the Jordan Frame
(JF), an equivalent description where matter appears minimally coupled and all the modi-
fications occur in the gravitational part of the action. But since the disformal coupling has

3It is possible to write (6.7) in the perfect fluid form Tµν ≡ ρuµuν if the coupled matter four velocity and

the energy density are identified with uµ = ẋµ/
√
−ẋ2 and ρ = mδ

(4)
D (xµ − xµ(λ))

√
ẋ2

g

(
1− B

A
(uµφ,µ)2

)−1/2
.
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Einstein (6.10)

gµν→A−1gµν
TTTTT

))TTTTTTgµν→gµν−BAφ,µφ,ν
jjjj

ttjjjjj

gµν → 1
Agµν −

B
Aφ,µφ,ν

��

Conformal (6.12)

gµν→A−1gµν
TTTTTT

**TTTTT

Disformal (6.11)

gµν→gµν−Bφ,µφ,ν
jjjjjj

uujjjjj

Jordan (6.13)

Coupling to φ Uncoupled Conformal (Agµν) Disformal (Bφ,µφ,ν)

Matter Jordan Einstein, Conformal frame Einstein, Disformal frame

Gravity Einstein Jordan, Disformal frame Jordan, Conformal frame

Table 6.1: Physical frames for disformally coupled theories. The conformal and disformal
frames refer to the type of coupling present in the matter sector. The transformation rules
on top are based on the action 6.9 and given in terms of the definitions (6.10-6.13) (Note
that the transformations commute). The lower Table summarizes the type of coupling to the
field present in the different sectors depending on the frame.

two parts, two more intermediate frames can be defined in which only a certain part of the
coupling enters the matter action.The four possibilities are described below and summarized
in Table 6.1, together with the transformations that provide the connections between them.
For the sake of simplicity, the Einstein frame has been defined using a matter metric of the
form (6.1), consistently with the notation used in most of the Chapter (and Section 6.2.2 in
particular).

1. Einstein Frame:
gGµν = gµν , gMµν = Agµν +Bφ,µφ,ν . (6.10)

This is the formulation used throughout the rest of the Chapter and for which the
equations are derived in Sections 6.1 and 6.2.2.

2. Disformal Frame:

gGµν =
1

A
gµν , gMµν = gµν +Bφ,µφ,ν . (6.11)

The disformal part enters the matter Lagrangian explicitly. The conformal factor enters
the gravitational sector through a coupling to R (e.g. old school scalar-tensor theories).

3. Conformal Frame:

gGµν = gµν −
B

A
φ,µφ,ν , gMµν = Agµν . (6.12)

The conformal part enters the matter Lagrangian explicitly and the field couples directly
to gravity, as described in Section 6.2.1.
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4. Jordan Frame:

gGµν =
1

A
gµν −

B

A
φ,µφ,ν , gMµν = gµν . (6.13)

Matter is minimally coupled to a metric and the field enters the gravitational sector
exclusively.

The JF is the most convenient frame to analyze certain properties of the theory and its
predictions, as matter follows the geodesics of the simple metric gµν . The matter metric in
the remaining frames contains the scalar field explicitly, and therefore matter moves along
geodesics that involve the field variations (6.5) in these representations. These frames are
still interesting to analyze the theory. For example, the equations simplify considerably in
the EF, just like in conformally related theories. Once these are solved, the solutions can be
used to transform back to the Jordan Frame.

The explicit computation of the curvature scalar for a metric which includes a disformal
part allows one to connect the theory studied in the Einstein frame with a particular sector
of the Horndeski Lagrangian (1.28). As anticipated in the introduction, the thus obtained
theory is related to a type of covariant Galileon when expressed in the conformal or Jordan
frame.

6.2.1 Disformal Curvature: The Conformal Frame

It is possible to get a sense of disformally coupled theories in a different frame by applying
the transformations sketched in Figure 6.1 to known actions. These are easy to apply to the
terms involving a scalar field, as was described in Chapter 5, where it was shown that applying
gµν → Agµν +Bφ,µφ,ν to a canonical scalar field transforms it into disformal quintessence

√
−g(X − V )→ A3/2√−g

(
X√

A− 2BX
−
√
A− 2BXV

)
, (6.14)

up to the ambiguity in the definition of the kinetic term described in Section 5.1.2. This
transformation allowed us to relate several dark energy models to disformally self-interacting
scalar fields, which were summarized in Table 5.1.

Considering similar relations when the transformations involve the gravitational sector
in (6.9) requires the computation of the Ricci curvature for a barred metric that includes
the scalar field as in (6.1). The starting point is the difference between the standard and the
barred connection (6.6)

Kαµν ≡ Γ̄αµν − Γαµν = ḡαλ
(
∇(µḡν)λ −

1

2
∇λḡµν

)
(6.15)

where the symmetrization is defined as t(αβ) ≡ 1
2 (tαβ + tβα). The barred Riemann tensor is

obtained from the usual definition, and it can be related to the unbarred one in a manifestly
tensorial form in terms of (6.15)

R̄αβµν ≡ ∂[µΓ̄αν]β + Γ̄αγ[µΓ̄γν]β (6.16)

= Rαβµν +∇[µKαν]β +Kαγ[µK
γ
ν]β ,

where anti-symmetrization is defined without the usual 1
2 coefficient A[αβ] ≡ Aαβ−Aβα. The

Ricci scalar follows from the contraction

R̄ ≡ ḡµνR̄αµαν . (6.17)
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with the inverse barred metric

gµν =
1

A

(
gµν − B

A− 2BX
φ,µφ,ν

)
. (6.18)

Finally, the disformal Einstein-Hilbert Lagrangian density requires the barred volume element
(D.4) to be covariant

√
−ḡ =

√
−gA2

√
1− 2

B

A
X . (6.19)

Note that no assumption has been made about the functions A,B out of which the geometric
quantities (6.15-6.17) are computed. However, the general computation is very lengthy, and
it is useful to adopt some simplifications.

Let us focus for the time being on a theory in the conformal frame, for which the
disformal part is absorbed into the gravitational sector. The following computation assumes
thus a gravitational metric of the form (6.12)

gGµν ≡ ḡµν = gµν +D(φ)φ,µφ,ν , (6.20)

where the disformal factor D(φ) is yet to be specified.4 The Jordan frame can be obtained
at the end of the computation by inverting the conformal transformation gµν → A−1(φ)gµν
in the resulting metric and curvature objects. Since the transformation rules for curvature
tensors under conformal relations are well known [13], and Galileon-like theories usually
retain a conformal coupling to matter in phenomenological applications [283], the Jordan
frame curvature will not be computed explicitly.

Let us further redefine the field to simplify the barred metric (6.20)

π ≡
∫ √

D(φ)dφ ⇒ ḡµν = gµν + π,µπ,ν . (6.21)

The above expression has the same form as the effective metric in probe-brane theories 6.2.
It simplifies considerably the computation of the connection tensor (6.15), which now reads

Kαµν = ḡαλ (π,λπ;µν) . (6.22)

The barred Riemann tensor can be computed directly from (6.16), rewriting anti-symmetrized
derivatives in terms of the curvature ∇[µ∇ν]X

···αi···
···βj ··· = ΣiR

αi
λµνX

···λ···
······ −ΣjR

λ
βjµν

X ·········λ···. The
result is also simple

R̄αβµν = ḡαλ
(
Rλβµν + γ2π;λ[µπ;ν]β

)
. (6.23)

Here

γ =
1√

1 + π,απ,α
, (6.24)

is a Lorentz factor that arises from the inverse metric (6.18). The barred Ricci scalar can be
easily obtained by a second contraction

R̄ =
(
gµν − 2γ2π,µπ,ν

) [
Rµν + γ2

(
π;µν2π − π;µ

;απ
;αν
) ]
. (6.25)

4Just as in the rest of the Chapter, D has been assumed to be independent of the field derivatives X.
This assumption is important in order to simplify the computations performed below. However, given the
importance of the X dependence of higher derivative terms in the Horndeski Lagrangian (1.28) and related
theories, it is worth considering the more general case D(φ,X), although in this case the equations would
become very involved.
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The gravitational Lagrangian
√
−ḡR̄ just requires multiplying by the barred volume factor

(6.19) to make it covariant.

The total action for the theory in the Conformal frame is obtained by adding a matter
Lagrangian with a conformal factor A(φ) in the matter metric

SCF =

∫
d4x
√
−g
[

1

γ
R− 2γπ,µπ,νR

µν +A2Lm(Agµν , ψ) (6.26)

+ γ
(
(2π)2 − π;µνπ

;µν
)

+ 2γ3
(
π,µπ,µαπ

;ανπ,ν − π,µπ;µνπ,ν2π
)]
.

These results were previously obtained by de Rham and Tolley [68] in the context of higher
dimensional gravity theories. The action (6.26) corresponds to a particular form of the G4

term in the Horndeski Lagrangian (1.31), which reduces to the fourth covariant Galileon term
in the limit X � 1, with the right non-minimal coupling to gravity. The reader is referred
to Section 5 of Ref. [68] for results on other curvature invariants and the relations to other
scalar-tensor theories. The Jordan frame expression of covariant Galileons was considered
by Appleby & Linder [93], where both the conformal and the disformal coupling to matter
were shifted to the gravitational side of the action. The theory studied there is essentially
different, as it includes all the covariant Galileon terms, but in the limit of small X, and the
authors make no attempt to obtain an Einstein frame description.

6.2.2 Equations in the Einstein Frame

In this Section the equations for a disformally coupled theory which accepts an Einstein
frame description will be derived. Such a theory is given by the following action

SEF =

∫
d4x

[√
−g
(
R[gµν ]

16πG
+ Lφ

)
+
√
−ḡL̄m(ḡµν , ψ)

]
(6.27)

=

∫
d4x
√
−g

[
R[gµν ]

16πG
+ Lφ +A2

√
1− 2

B

A
X L̄m

(
Agµν +Bφ,µφ,ν , ψ

)]
.

The interacting matter sector
√
−ḡL̄m is to be constructed using the barred metric (6.1), as

it has been made explicit in the second line using the explicit form of ḡµν and its determi-
nant (6.19). It will be further assumed that there is no dependence on the barred metric
derivatives.5 A scalar field Lagrangian density of the k-essence type Lφ = Lφ(φ,X) has
been also included. More general dependence on the field derivatives may be considered (e.g.
Kinetic Gravity Braiding [65]), but this term gives relatively simple equations of motion, and
is general enough to accommodate the both a canonical Lφ = X − V and a disformally self-
interacting scalar described in Chapter 5. The matter Lagrangian may include other pieces
with different couplings, e.g. an uncoupled matter sector can be included by the addition of
a Lagrangian

√
−gLu constructed out of the unbarred metric.

5This implies that the disformal connection (6.6) does not appear in the action. This assumption holds
for scalar fields and gauge vectors vanishes due to the lack of indices and antisymmetry of the kinetic term,
respectively. Although other fields may couple to ḡµν,λ, the assumption simplifies the equations considerably
and is common in the analysis of scalar tensor theories.
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The stress energy tensors for both species will be further defined in terms of the con-
travariant gravitational metric

Tµνφ ≡ 2√
−g

δ (
√
−gLφ)

δgµν
, (6.28)

Tµνm ≡ 2√
−g

δ
(√
−ḡ L̄m

)
δgµν

, (6.29)

such that the Einstein field equations take the usual form Gµν = 8πGTµν and the total
energy-momentum is covariantly conserved with respect to the unbarred metric by virtue of
the Bianchi identities: ∇µ(Tµνm + Tµνφ ) = 0. However, the coupling causes that this relation
does not occur for each component separately. Instead, only the total energy-momentum for
the field and matter is conserved and ∇µTµ(φ)ν = −∇µTµ(m)ν . The divergence of the scalar
field stress tensor can be re-casted as

∇µTµ(φ)ν =

(
Lφ,φ −∇µ

∂Lφ
∂φ,µ

)
φ,ν ≡ Qφ,ν , (6.30)

where the interaction densityQ has been defined and is equal to the variation of the uncoupled
Lagrangian with respect to the field δLφ/δφ. The equation for the scalar field, δS/δφ =
δLφ/δφ + δLm/δφ = 0, allows one to write the above expression in terms of the matter
Lagrangian

Q =
1√
−g

(
∇µ

∂
(√
−ḡL̄m

)
∂φ,µ

−
√
−ḡL̄m,φ

)
. (6.31)

The coupling can be evaluated by application of the chain rule. For the specific form of the
barred metric (6.1), the variation with respect to the field yields

δ
(√
−ḡL̄m

)
δgµν

∂gµν
∂ḡµν

∂ḡµν
∂φ

=

√
−g

2A
Tµνm

(
A′gµν +B′bµbν

)
, (6.32)

and similarly for the derivative with respect to the field gradient.
After replacing these expressions in (6.31), the coupling reads

Q = ∇µ
(
B

A
Tµνm φ,ν

)
−
[
A′

2A
Tm +

B′

2A
φ,µφ,νT

µν
m

]
. (6.33)

The equations for the coupled matter component and the field are then

∇µTµνm = −Qφ,ν , (6.34)

Mµν
(φ)φ;µν + Lφ,φ − 2XLφ,Xφ = Q , (6.35)

where Mµν
(φ) ≡ (Lφ,Xgµν + Lφ,XXφ,µφ,ν) is the general kinetic term for the scalar. Einstein

equations Gµν = 8πG(Tµνm + Tµν(φ)) together with (6.34, 6.35) and (6.33) determine unam-
biguously the evolution of matter, the scalar field and the metric. These equations naturally
contain the case of conformally coupled quintessence, where only the coupling to the trace of
energy momentum is present in Q. Note that so far this result is general and does not depend
upon the matter content as long as the matter action only depends on the field through the
barred metric (6.1) algebraically.
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Scalar field equation

The first term in (6.33) contains higher derivatives of the variables Tµν;µ, φ;µν due to the
kinetic mixing in the mater action, e.g (6.8). These have to be solved for in order to integrate
the evolution equations (6.34, 6.35), which can be done after adopting a coordinate system.
For the scalar field, it is possible to eliminate the matter derivatives in a general way by
contracting (6.34) with φ,ν and solving for φ,ν∇µTµνm . The result can be inserted back in
(6.35) and rearranged as

Mµν∇µ∇νφ+
A

A− 2BX
QµνTµνm + V = 0 , (6.36)

were we have defined:

Mµν ≡ Lφ,Xgµν + Lφ,XXφ,µφ,ν −
B Tµνm

A− 2BX
, (6.37)

Qµν ≡
A′

2A
gµν +

(
A′B

A2
− B′

2A

)
φ,µφ,ν , (6.38)

V ≡ L,φ − 2XL,Xφ . (6.39)

The above equation can then be used instead of (6.35) to determine the evolution of the scalar
field. It displays very clearly the role of the coupling, which enters not only as a modification
to the effective potential (second term), but also in the coefficient for the higher derivatives
of the field. This feature will be ultimately responsible for the screening mechanism that
disformal models exhibit in high density regions, explored in Section 6.5.

Coupling to Perfect Fluids

The analogue of (6.36) for the covariant matter conservation equation without second order
field derivatives can not be obtained without choosing a time slicing due to the different
high derivative structure in both equations. Nevertheless, there is no need to do so, since we
already found a bona fide field equation (6.36) that can be integrated consistently with the
corresponding equation for matter (6.34), substituting the appropriate value of Q.6

Assuming a perfect fluid in the Einstein frame Tµν = (ρ+p)uµuν+pgµν with uαuα = −1,
it is instructive to project (6.34) along and perpendicular to the matter four velocity. This
determines how the local law of energy conservation and the geodesic equation are modified
by the coupling

uα∇αρ+ (ρ+ p)∇αuα = Qφ,αu
α . (6.40)

(ρ+ p)uα∇αuµ + [gµα + uµuα] (∇αp+Q∇αφ) = 0 . (6.41)

In the first equation the coupling the usual energy conservation relation, due to the energy
transfered from the scalar field, which is modulated by the projection of the field gradient
along the 4-velocity. The second equation determines the departure of geodesic motion w.r.t.
the gravitational metric. The first term describes the force arising from the pressure gradient
and the second the additional force exerted by the scalar field. Both forces are projected into
the direction ⊥ uµ (coefficient in brackets) due to the orthogonality of the four velocity and
four acceleration.

6It is possible to solve for the time derivatives of all the variables after a metric ansatz has been chosen,
as will be done in the study of FRW models and cosmological perturbations, see Sections 6.3, 6.4.
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6.3 Background Cosmology

Let us consider an application of the theory (6.27), where the scalar acts as a quintessence
fiend and the disformal coupling is used to trigger cosmic acceleration. Using the Einstein
frame description the Friedmann equations have the usual form

H2 +K =
8πG

3
(ρ+

φ̇2

2
+ V ) , (6.42)

Ḣ +H2 = −4πG

3
(ρ+ 2φ̇2 − 2V ) , (6.43)

but the conservation equations for matter and the scalar field have to be computed from
(6.34, 6.36):

ρ̇+ 3Hρ = Q0φ̇ , (6.44)

φ̈+ 3Hφ̇+ V ′ = −Q0 , (6.45)

were the background order coupling factor reads

Q0 =
A′ − 2B(3Hφ̇+ V ′ + A′

A φ̇
2) +B′φ̇2

2
(
A+B(ρ− φ̇2)

) ρ , (6.46)

after solving away the higher derivatives. In the following we restrict to flat space, K = 0.
At this stage it is possible to understand the difference between the pure conformal

(B = 0) and disformal (A = 1) cases by writing (6.46) in terms of the equation of state and
the scalar field energy density:

Q
(c)
0 =

A′

2A
ρ , (6.47)

Q
(d)
0 ≈

( B′
2B

(1 + wφ)− V ′

2V
(1− wφ)

)
ρφ +

√
3

Mp
((1 + wφ)ρtotρφ)1/2 , (6.48)

where in the second line it has been assumed that Bρ � 1 & Bφ̇2. This approximation
is satisfied by the model under study when the coupling is active, see Figure 6.2. The last
term in (6.48) represents the contribution from the Hubble term, which is subdominant when
the slopes of B, V are large. The above expressions imply that the conformal and disformal
coupling between Dark Energy and Dark Matter are related to essentially different dark
energy parameterizations, where the interaction is either proportional to ρ = ρdm [49, 258]
or ρφ [284, 285].

6.3.1 An Example Model: Disformally Coupled Dark Matter

In what follows it will be assumed that the field is only coupled to Dark Matter, while radia-
tion and baryons follow geodesics of the gravitational metric and do not feel the scalar inter-
action directly. If baryons are also coupled, then the ratio ρdm/ρb remains fixed, because both
species feel the same effective metric.7 Postulating that the baryonic and electromagnetic

7This can also be seen directly from (6.46): in the denominator of Q0, the energy density has to be
substituted by the total one ρ→ ρdm+ρb, while the multiplicative coefficient ρ would refer to each individual
species.
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sectors are constructed out of the gravitational metric also avoids problems with precision
gravity tests and the subtleties related to the existence of different frames, hence simplifying
the analysis of cosmological observations.

To study the dynamics within a particular example, we focus on a simple Disformally
Coupled Dark Matter (DCDM) model, constructed with the following prescriptions

• Dark Matter disformally coupled to a canonical scalar field, following Eq. (6.44-6.46).

• An exponential parametrization for the disformal relation and the scalar field potential:

B = B0e
β(φ−φ0)/Mp , V = V0e

−γφ/Mp , A = 1 . (6.49)

with Mp = (8πG)−1/2. The conformal factor A has been set to the trivial value in order
to focus on the novel features. Furthermore, the coupling is chosen to be negligible in
the early universe, and hence initial conditions and early evolution are not affected.

• Uncoupled baryons, photons and neutrinos, which follow the usual barotropic scaling
relations ρ = a3(1+w). Zero cosmological constant.

Besides being motivated from some high energy scenarios, the exponential forms (6.49) fa-
cilitate the choice of natural scales for the constant prefactors by shifting the zero point of
the field (e.g. B0 ∼ M−4

p , V0 ∼ M4
p , A0 dimensionless). The model set up is similar to

the uncoupled self-interacting field case described in Chapter 5. In particular, the potential
ensures a tracking stage for the field and the value of φ0 is chosen to tune the transition time
when the disformal coupling becomes relevant. Although only Dark Matter is affected by the
coupling, radiation and baryons are included in order to provide a more realistic description.

With this set up, the evolution at early times is as in the usual exponential quintessence
model, where the field tracks the dominant fluid component and the slope of the potential γ
determines the amount of Early Dark Energy (EDE) [9]

Ωede =
3

γ2
(1 + wm) , (6.50)

which depends on the dominant matter component equation of state parameter wm. The new
features appear when the disformal factor Bφ̇2 becomes of order one. Then the clocks that
tick for Dark Matter, ḡ00 = −1 + Bφ̇2, slow down and make the effective equation of state
approach minus unity asymptotically. The field also slows down to avoid a singularity in the
effective metric ḡµν , and the universe enters into a de Sitter stage. This natural resistance
to pathology was also observed in the disformal self-coupling scenario described in Chapter
5 and references [4, 266]. The disformal coupling provides then a mechanism that triggers
the transition to an accelerated expansion. The relatively steeper the slope of the disformal
function is, i.e. the higher the ratio β/γ, the faster the transition happens, as seen in Figures
6.1, 6.2. This transition also produces a short “bump” in the equation of state, which affects
the growth of structure.

The departures with respect to the standard ΛCDM model allow the use of cosmologi-
cal observation to constrain the model parameters in the homogeneous approximation using
different datasets. The Union2 Supernovae compilation and the local expansion rate mea-
surement were implemented as described in Section 3.3.1. The BAO scale data was also used
as described in Section 3.3.1, but computed using the Dark Matter fraction extrapolated
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Figure 6.1: Background evolution of disformally coupled matter. Left: evolution of the
energy density for the field (red) and coupled matter (blue) for different choices of the coupling
slope β. Right: equation of state for the field (red) and coupled matter (blue). High values of
β/γ (solid, dashed) give a good fit to observations, while low values (dotted) do not produce
enough acceleration.
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Figure 6.2: Evolution of the dimensionless disformal factors Bφ̇2, Bρ and BV . Higher
values of β/α produce a sharper transition and lead to higher B at late times.

from the drag epoch assuming the usual scaling ρdm ∝ a−3 in order to ensure the validity of
the fitting formulae. The Cosmic Microwave Background constraints include the bound on
early dark energy obtained from the South Pole Telescope Ωφ(z∗) < 0.018 (95%C.L.) [122]
and the angular scale, given by the ratio between the physical sound horizon at recombi-
nation and the angular diameter distance θCMB = rs(z∗)(1 + z∗)/DA(z∗) = 0.5952(16) deg
[18]. The effects of early dark energy are taken into account by using the model background
thermal history to compute rs, rather than a fitting formula. A prior on Ωbh

2 obtained from
primordial nucleosynthesis [286] was also included. Although this values assumed no Early
Dark Energy, the severe CMB bounds constraint the potential impact of neglecting EDE in
BBN constraints.

A Markov Chain Monte Carlo analysis with these datasets was performed using a mod-
ified version of CMBEasy [216]. The obtained constraints are shown in Figure 6.3 and Table
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Figure 6.3: Marginalized one and two-sigma regions obtained from Supernovae (Blue), BAO
(Green), CMB angular scale + early dark energy bounds (Orange), and combined (Gray).
All contours included a prior on H0 from the HST and ΩbH

2
0 from Big Bang Nucleosynthesis

(see text).

h = 0.738± 0.024 Ωb = 0.0382± 0.005

Ωdcm = 0.263+0.033
−0.022 Ωφ = 0.698+0.025

−0.036

λ > 18.6 β/λ > 15.6

Table 6.2: Parameter constraints for disformally coupled Dark Matter. Error bars corre-
spond to the one-sigma allowed ranges.
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6.2. The slope of the potential γ determines the amount of early dark energy, and is there-
fore best constrained by the CMB. The ratio β/γ determines the equation of state at late
times. Its value is best bound by the combination of all different probes. In the homoge-
neous approximation there are no higher bounds on the parameters β and γ, and the model
is completely viable with χ2

disf = 538.79 versus χ2
ΛCDM = 538.91 obtained from the best fit

WMAP7 ΛCDM model compared to the same datasets. The lower value of the equation
of state parameter for the disformally coupled matter is responsible for the higher value of
Ωdm, at the expense of a lower Ωφ than in standard quintessence or cosmological constant
cosmologies. These results reproduce closely the constraints on the disformal self-interaction
of the (otherwise uncoupled) scalar field described in Chapter 5: For steep slopes γ and
β, the background evolution becomes increasingly similar to ΛCDM. However, the model is
essentially different from ΛCDM and disformal quintessence, as is quite obvious when one
looks at the effective Dark Matter equation of state in Figure 6.1. The growth of perturba-
tions studied in the next Section shows that the model is not viable as it is. A glimpse to
alternative, viable models is provided in Section 6.4.3.

6.4 Cosmological Perturbations

A more realistic description of the universe requires considering cosmological perturbations.
The starting point is equation (6.31), which can be used to read both the disformal matter
non-conservation and the field dynamical equation. Working in the Newtonian gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)d~x2 , (6.51)

the equation for the scalar field is

δφ̈+ 3Hδφ̇+

(
k2

a2
+ V ′′

)
δφ = −δQ− 2Φ

(
Q0 + V ′

)
+ φ̇(Φ̇ + 3Ψ̇) , (6.52)

while the perturbed continuity and Euler equations for the disformally coupled matter con-
trast δdc = δρ/ρ (with ρ being the coupled matter component) and the divergence of its
velocity θ = ikjT

0i
(m) = ikjv

jρa−1 read

δ̇dc +
θ

a
+
Q0

ρ
φ̇δdc = 3Ψ̇ +

Q0

ρ
δφ̇+

δQ

ρ
φ̇ , (6.53)

θ̇ + θ

(
H +

Q0

ρ
φ̇

)
= k2

(
Φ +

Q0

ρ
δφ

)
. (6.54)

The coupling perturbation δQ is given in Appendix D.2 for the general case. In the case of
a purely disformal coupling, it reduces to

δQ(d) = −
(
k2

a2

Bρ

M
+ (2BV ′′ −B′′φ̇2)

ρ

2M
+
(

2B′(V ′ + 3Hφ̇) +B′2φ̇2(ρ− φ̇2)
) ρ

2M2

)
δφ

+(1−Bφ̇2)
Q0

M
δdc +

(
B′φ̇−B(3H − ρB′φ̇)−B2(2V ′φ̇+ 3H(ρ+ φ̇2))

) ρ

M2
δφ̇

+
(
−B′φ̇+B(6H − ρB′φ̇) + 2B2(3Hρ+ V ′φ̇)

) ρφ̇

M2
Φ +

3Bρφ̇

M
Ψ̇ . (6.55)
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It is a much more cumbersome combination of the fluid and field perturbations than for the
purely conformal coupling

δQ(c) =
1

2
log(A)′ρδdc +

1

2
log(A)′′ρδφ . (6.56)

Note that, unlike in the conformal case, the first term in (6.55) is proportional to k2 and hence
the coupling is scale dependent. This feature will be reflected in the growth of perturbations
and the power spectrum.

6.4.1 Small Scale Limit

To extract the most relevant new features by analytic means, we shall consider the subhorizon
approximation. In the small scale limit, taking into account only the matter perturbations
and the gradients of the field, there is a simple expression for the perturbed interaction δQ. In
this Newtonian limit, we further relate the field gradient to the matter perturbation through
the field equation (6.52), which yields the simple expression

δQ(N) = Q0δdc . (6.57)

Combining equations (6.53) and (6.54) together with the usual Poisson equation, we obtain
the evolution of the coupled Dark Matter overdensity

δ̈dc +

[
2H +

Q0

ρ
φ̇

]
δ̇dc = 4πGeffρδdc . (6.58)

In addition to an extra friction term, the source term is modulated. The last effect is captured
by defining an effective gravitational constant Geff that determines the clustering of Dark
Matter particles on subhorizon scales

Geff

G
− 1 =

Q2
0

4πGρ2
. (6.59)

This approximation has the same expression as the simple conformal case, although with a
significantly different functional form of the coupling Q0, which is now given by Eq. (6.46).

The evolution of Geff for the disformally coupled Dark Matter example model (6.49) is
shown in Figure 6.4. It is characterized by a bump at the transition, whose height increases
with β, and a further increase when the potential becomes dominant. At the later stage, the
dependence is approximately Geff/G−1 ∼ (γV/ρ)2 and yields a large value since dark energy
domination requires V & ρ and γ & 18 is necessary to avoid the effects of early dark energy
(6.50). This enhancement occurs on observable scales and spoils the formation of large scale
structure in this particular case. Problematic growth enhancement also occurs in conformally
coupled models that attempt to address the coincidence problem [258]. The observable effects
will be analyzed using the full perturbation δQ within the disformally coupled Dark Matter
model. Several alternatives to render the model viable will be described in Section 6.4.3.

6.4.2 Structure Formation for Disformally Coupled Matter

The linearized equations (6.52-6.55) were solved using a modified version of the Boltzmann
code CMBeasy adapted to the Disformally Coupled Dark Matter model described in Section
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Figure 6.4: Effective gravitational constant on small scales (6.59) for different values of β, γ.
The value is large at the transition due to the disformal friction term B′φ̇2, and latter due
to the contribution of the potential term BV ′ (see text and compare to Figure 6.1).

6.3.1. Since matter is essentially uncoupled until z . 10 there was no need to modify the
initial conditions, which have been assumed adiabatic. Figure 6.5 shows the evolution of the
density contrast of disformally coupled matter. The baryons, which are uncoupled in this
particular example, are also shown for comparison. Figure 6.6 displays the power spectra
for disformally coupled matter and baryons at z = 0 for different values of the parameters.
Figure 6.7 shows the CMB power spectrum and the baryon-DM bias induced by the coupling
at z = 0.

Besides the effect of early dark energy and late time scalar force captured in Geff , the
disformal coupling causes a considerable integrated Sachs-Wolfe effect, a fundamental bias
between disformally coupled matter and baryons and cause large scale oscillatory features
beyond the BAO scale. The numerical results and the discussion are restricted to the DCDM
model, and focus on the role of the potential slope γ, which mostly determines the late time
value of Geff . It remains to be studied whether or not similar effects occur in viable models
such as the ones described in Section 6.4.3, and to what extent they might be observable by
current or future surveys.

Early Dark Energy

Both the baryons and the coupled Dark Matter are indistinguishable as long as the coupling
is negligible. They are equally affected by the presence of early dark energy (see Figure 6.5),
which produces a departure from the matter domination result δ ∝ a: EDE increases the
expansion rate without clustering, reducing the formation of structure. This effect was also
found for the uncoupled scalar field (Chapter 5), and is most noticeable for models with
higher Ωede (e.g. γ = 4).
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Figure 6.5: Growth of disformally coupled matter and (uncoupled) baryons. Upper panel:
Thick purple lines coorespond to the disformally coupled matter and thin brown lines to
baryons at the same scales. The pressence of early dark energy affects the slope at early
times. Afterwards, the Dark Matter perturbation starts growing rapidly, as deduced in the
small scale approximation (see Figure 6.4). Lower panel: Evolution of the power spectrum
at z = 0 (thick, solid), 0.3, 0.6, 1 (thick, dotted), 2, 4 and 10 (thin, dotted). Gray line
corresponds to a reference ΛCDM model.

Late Enhanced Growth

The growth of structure is enhanced after the transition takes place, consistently with the
small scale approximation (6.59). The large value of Geff/G overcomes the additional friction
term, and structures form much faster than in the standard CDM scenario. Models with less
EDE suffer a higher enhancement, because the effective gravitational constant Geff ∝ γ2 is
larger and the transition occurs earlier (i.e. the field takes longer to dominate the energy
content). The effect from the bump in the effective Newton’s constant associated to the
transition is not obvious in the evolution of δ, and is subdominant with respect to potential
domination.

The enhanced growth effect is partly canceled by the early dark energy damping. This
degeneracy causes the relative resemblance between DCM power spectra with γ = 4 and the
DM power for the standard model on small scales, but fails anywhere else. It would be worth
exploring this cancellation in a more systematic way (e.g. MCMC exploration of the model
parameters). This would actually require a better understanding of the baryon bias induced
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Figure 6.6: Perturbations at z = 0 for β = 20γ and different values of γ. First line: Power
spectrum for (uncoupled) baryons and (coupled) matter. Second Line: Ratio of the power
spectra in disformally coupled models relative to ΛCDM. See Section 6.4.2 for a discussion
of the different effects.

by the coupling (see below). However, such an exploration is postponed for future work.

Note that Fourier modes reach the non-linear regime earlier due to the enhanced cou-
pling. Upon the failure of linear perturbation theory, the disformal screening mechanism
explored in Section 6.5 might hide these dramatic effects and restore the standard growth,
softening the deviations on small scales. Although this seems unlikely to save the example
model, it might be necessary to take the effect into account to obtain a fair comparison with
observations.8

Scale Dependent Growth and Bias

The power spectra show scale dependent evolution, as can be seen in the different power
spectra normalized to the corresponding ΛCDM (second line of Figure 6.6). In the standard
model, the linear growth factor is scale independent and does not distinguish baryons from
Dark Matter. For disformally coupled Dark Matter, the scale dependent growth follows from
the k-dependent term in the perturbed coupling (6.55). This feature does not appear in

8Similar enhanced growth effects have been considered in the context of quintessence conformally coupled
to neutrinos, where the necessity of non-linear analysis has been pointed out [53].
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Figure 6.7: CMB power spectrum (left) and bias between baryons and Disformally Coupled
DM (DCM) induced by the coupling (right). The enhanced growth of Dark Matter structures
on small scales produces a very large ISW effect. Note that the departures are worse for
models with less early dark energy (higher γ), as derived in the small scale approximation
(6.59).

phenomenological coupled models, in which the growth of the coupled matter structures is
enhanced, but in a scale independent way, (cf. [284]).

The coupling also modifies the relation between baryonic and Dark Matter structures,
since DM couples directly to the field while baryons are only indirectly affected. As baryons
are dragged into the potential wells created by the coupled matter, they follow a scale depen-
dent growth pattern, delayed with respect to the dominant matter component. The resulting
bias between the two species is shown in Figure 6.7. The scale dependence of the bias vanishes
both on super-horizon scales (k/h . 0.001) and the small scales (k/h & 0.1), which are well
described by the scale-independent Geff (6.59). The intermediate region shows the interplay
between the scale dependent growth for the coupled matter and the baryons following these
structures.

Since galaxies form out of baryons, this fundamental bias modifies the usual DM-galaxy
power relation (2.20). Such a correction needs to be taken into account when comparing
the observed power spectrum with disformally coupled models. On the other hand, other
measurements of the matter distribution such as weak lensing would probe the structures
formed by both components, and may be used to break the degeneracy.

CMB: Integrated Sachs-Wolfe Effect

The enhancement of the perturbations after the transition causes the very large Integrated
Sachs-Wolfe effect appreciated in Figure 6.7, which becomes most noticeable for the models
with higher values of γ. The model with γ = 4 gives a better fit on the l . 10 multipoles,
but departs considerably in the range 10 . l . 200 due to the effect of early dark energy
after recombination. The model with less early dark energy has the opposite problem: it
produces a better fit in the intermediate range 100 < l < 200 due to the lower amount of
early dark energy, but the ISW enhancement explodes at lower multipoles due to the higher
value of Geff . The different amounts of early dark energy have an additional effect on the
CMB normalization due to the primary Sachs-Wolfe effect: by reducing the potential wells
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that redshift the photons, Ωede acts increasing the height of the peaks.

Oscillatory Features beyond the BAO Scale

Oscillatory features can be appreciated in the coupled matter power spectrum on very large
scales. These are likely created as field oscillations on scales near k ∼ H(z), which are then
transferred to the coupled component, when the coupling is active. They are most noticeable
for the models with a large early dark energy component, e.g. larger field energy density.
Although it constitutes a distinctive feature of the model, the oscillations are not significantly
imprinted on the baryonic power spectrum. This, together with the large survey volumes
necessary to explore such scales would make it difficult to detect them through LSS surveys.
However, the large scale oscillations would be a characteristic signature in models where the
disformal coupling is universal, in which the same effects occur to DM and Baryons.

6.4.3 Viable Scenarios

The study of cosmological perturbations within the Disformally Coupled Dark Matter model
(6.49) shows very drastic departures in the formation of large scale structure, that seem
very difficult to reconcile with observations. It would be interesting to obtain a more precise
quantification of these discrepancies through an MCMC analysis and explore possible degen-
eracies (e.g. the growth suppression from early dark energy and the enhancement from the
high Geff). However, it is necessary to address the existence of alternative, viable scenarios
already at this stage.

Luckily, the action (6.27) is very general and there is considerable room for improvement
through different choices of the functions A,B and Lφ. There are at least two possibilities

• Introduce a modulation in the disformal factor B(φ) → f(φ)B(φ), to make Q0 small
enough after the field enters the slow roll phase. This modification can render δGeff

arbitrarily small, except for a relatively short time around the transition (see Figure
6.1). This type of models would allow us to study the effects imprinted by the transition
bump without the problems caused by the high Geff at late times.

• Constructing the field Lagrangian using a disformal metric, as in the uncoupled model
presented in Chapter 5 and references [4, 266]. In this model the transition to slow
roll would be partially driven by the scalar field Lagrangian itself, and the effects on
matter may be significantly reduced. In the minimal prescription, the matter and field
Lagrangian are constructed using the same metric (6.1) and no extra parameters are
introduced. If this model turned out not to be viable, a different disformal metric for
the field and the coupled matter would offer an alternative that is able to interpolate
between disformal quintessence and the disformally coupled Dark Matter presented
here (e.g. different disformal factors with B(m) = εB(φ)).

Other alternatives could be based on the interplay between the conformal and the disformal
part of the coupling. Viable scenarios might be exploited to alleviate the claimed problems
of ΛCDM with small scale structure formation such as the tension between Dark Matter
simulations and observations with regard to both the density profiles of Dark Matter halos and
for the number of predicted substructures inside a given host halo, the baryonic Tully-Fisher
relation, the constant galactic surface density or the large scale bulk flows (See reference [17]
for a summary and references therein for further details).
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As a final remark, let us note that the enhanced growth rushes the modes into entering
the non-linear regime at earlier times, breaking down the perturbative approach followed
here. As it will be explained in the next Section, the disformal coupling comes equipped with
a screening mechanism, that hides the effects of the additional force on dense environments.
Addressing the consequences of this feature would require considering the non-linear backre-
action of the field, which is not properly captured in the approximations considered so far.
Chameleon-type theories also show a strengthening of the screening when non-linearities are
properly taken into account [287].

6.5 The Disformal Screening Mechanism

In this section we will consider the possibility of extending the disformal coupling to visible
matter, as well as other aspects of gravitational theories based on a disformal coupling in
the Einstein frame. Due to the stringent bounds on equivalence principle violations [110],
some sort of screening mechanism is necessary to hide the coupling in dense environments
such as the Solar System. The role of a disformal coupling in the chameleon mechanism was
recently investigated by Noller [288], who correctly noted that the disformal contribution to
the conservation equations vanishes for static, pressureless configurations. This is obvious
from (6.34), since only the T 00 component is nonzero for dust, and when contracting the
field derivatives with the stress tensor a non-vanishing result requires time evolution of the
scalar field. Therefore, addressing the effects of disformal couplings requires studying the
field dynamics in high density environments.

It is possible to obtain some insight into the dynamics of the field from the analysis
of the background cosmology given in Section 6.3, where it was argued that for the purely
disformal case the coupling was proportional to the scalar field energy density, cf. Eq. (6.48).
This causes the existence of two regimes, a matter dominated regime in which the effects of
the coupling are small, and a field dominated regime in which the coupled matter equation
of state is modified, as can be seen in Figure 6.1. When denser regions form, the scalar
field energy density becomes insufficient to produce large effects on the matter distribution,
unless the field gradients follow the matter distribution and intensify the additional force. As
it will be shown below, the kinetic mixing induced by the disformal coupling makes the scalar
field evolution insensitive to the matter distribution, as long as the matter energy density is
sufficiently high.

For the sake of concreteness, let us restrict ourselves to a canonical scalar field coupled
to a perfect fluid. The general equation (6.36) then reads

(X gµν −B Tµνm )∇µ∇νφ+

(
A′

2
gµν +

(
A′B

A
− B′

2

)
φ,µφ,ν

)
Tµνm −XV ′ = 0 , (6.60)

where X ≡ A− 2BX < A is bounded in order to avoid a singularity in the volume element
of the barred metric

√
−ḡ ∝ X 1/2, cf. (6.19). The form of the field equation strongly

suggests that the dynamics of the coupled system will be different in high than in low density
environments. Since the energy momentum-tensor appears as a coefficient of the higher
derivatives as well as in the effective potential, there is a well defined limit T 00 = ρ → ∞,
in which the field equation simplifies considerably. This property will be crucial for the
disformal screening mechanism analyzed in Section 6.5.2.
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6.5.1 Pressure Instability

The above equation also shows that the different components of the energy momentum ten-
sor can modify the character of the coefficient of the second order derivatives of the field.
Equation (6.36) is a quasi-linear, diagonal second order equation [289], of the form

φ;µνMµν(φ, φ,λ, T
αβ) + f(φ, φ,λ, T

αβ) = 0 . (6.61)

However, its hyperbolicity relies on the signature of Mµν , which in turn depends on the
relative values of the coefficients of the higher spatial and time derivatives. Focusing on
the purely disformal case A = 1 for concreteness, we see that the coefficient of the time
derivatives, M00 = −1 + 2BX − Bρ, can only flip sign if B or ρ are negative (because
of the bound 2BX < 1). However, a large enough value of the Einstein frame pressure,
p > B−1 − X, may flip the sign of M ii = 1 − BX − Bp. If this happens, the equation
becomes non-hyperbolic (at least locally), challenging the good initial value formulation and
turning the system unstable.

Addressing the viability of the theory hence requires determining under which conditions
the instability may occur dynamically, which in turn requires considering the evolution of
the coupled matter components. In certain cases, the system might respond to a situation
in which Bp . 1 − BX by diluting the (Einstein frame) pressure below the threshold value
or softening the spatial gradients of the scalar field. In this sense, the instability induced
by the pressure may be analogous to the potential existence of singularities in the disformal
volume element whenever ḡ ∝ A−2BX → 0. This singularity in the barred metric is avoided
by the field evolution, as it slows down whenever Bφ̇2 → A. The mechanism exploited to
induce a slow roll phase in cosmological applications (disformal quintessence and the disformal
coupling to matter described in Sections 5.2.1 and 6.3.1) is precisely this dynamical resistance
to pathology.

Studying the conditions under which the pressure instability can be avoided dynamically
might restrict the allowed functional forms of the conformal and disformal factors. In the
worst case, it might spoil the disformal screening mechanism, or even completely forbid the
occurrence of a disformal coupling. Determining whether or not this is the case will be the
objective of future work. The Einstein frame pressure p will be neglected as a part of the
approximation scheme in the following analysis, implicitly assuming that the theory is well
behaved.

6.5.2 The Scalar Field in Dense, Non-relativistic Environments

The study of Solar System and laboratory tests of gravity requires considering energy densities
that are much higher than the cosmological average and pressure is completely sub-dominant.
As a first approximation, this regime can be explored using the general scalar field equation
(6.60) for a static matter distribution ρ(~x) in the limit ρ→∞. More precisely, the following
ratios will be assumed to be negligible

Γµ00φ,µ ∼
p

ρ
∼ p

ρ

(
~∂φ

∂tφ

)2

∼ X
Bρ
∼ X

Bρ
V ′ ∼ 0 (6.62)

These approximations quantify to what extent the effects of gravity and pressure are dis-
regarded, the requirement of having “soft” spatial gradients relative to the time evolution
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and the fact that Bρ is large enough. This conditions will be briefly discussed at the end of
the Section, focusing on systems in which their lack of fulfillment might lead to observable
signatures.

The set of assumptions (6.62) simplifies the field equation (6.60) considerably

φ̈ ≈ − B
′

2B
φ̇2 +A′

(
φ̇2

A
− 1

2B

)
= − β

2Mp
φ̇2 , (6.63)

where the first equality is general and the second applies to a purely disformal coupling
with exponential forms (6.49). The above expression departs substantially from the simple
conformal coupling, for which the ρ→∞ limit is ill-defined. Two important features of the
above equation endow the theory with the disformal screening mechanism:

• The spatial derivatives become irrelevant, as they are suppressed by a p/ρ factor w.r.t.
the time derivatives.9

• The equation is independent of the local energy density, making the field evolution
insensitive to the presence and distribution of massive bodies.

These features ensure that the field rolls homogeneously and avoids the formation of spatial
gradients between separate objects, which would give rise to the scalar force. The above
properties are caused by the kinetic mixing between the field and matter degrees of freedom,
and lay at the core of the decoupling between both components.

Let us analyze the simpler, purely disformal exponential case. The second equality of
equation (6.63) can be easily integrated

φ̇(t) =
Mp

β

(
t+

Mp

βφ̇(0)

)−1

. (6.64)

In this solution the field time variation is approximately constant while t� Mp

βφ̇(0)
and slows

down afterwards as ∝ 1/t. Since the coupling to non-relativistic matter is proportional to φ̇,
stronger couplings decay earlier. It is possible to obtain an implicit solution for A = 1, ρ̇ = 0
keeping the potential V , but otherwise assuming the simplifications (6.62). It is given as an
implicit solution

t− t0 =

∫ φ

φ0

√
B(φ′)

C0 − 2V (φ′)/ρ
dφ′ , (6.65)

where φ̇2 = C0
B −

2V (φ)
Bρ .10 The potential appears suppressed with respect to the energy

density. In tracking Dark Energy models, V is a decreasing function of the field and φ̇ > 0.
Therefore, V is of the order of magnitude of the average cosmic density ρ0 and can be safely
neglected for high energy densities, recovering the simpler solution (6.64). As the field slows

9Equation (6.63) also follows from taking the limit ρ � A/B, φ̇2 in the FRW coupling density Q0 (6.45),
precisely due to the absence of spatial derivatives.

10Under these assumptions, Eq. (6.60) can be written as φ̈ + B′

2B
φ̇2 + V ′

Bρ
= 1

Bφ̇

d
dt

(
Bφ̇2/2 + V

ρ

)
= 0. The

second equality can be directly integrated, giving the constraint φ̇2 = C0
B
− 2V (φ)

Bρ
, which can be integrated

again to obtain (6.65).
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down with time if B′/B > 0, the order of magnitude of the field time derivative is also
cosmological.

One of the effects of the coupling is to modify the energy conservation equation for
matter in the Einstein frame, cf. Eq. (6.40). This induces a variation of the gravitational
mass, that can be bounded by precision gravity tests. In a gravitationally bound two body

system, this effect is degenerate with a possible time evolution of Newton’s constant Ġ
G ↔

Ṁ
M +

ṁ
m to a first approximation, as can be argued by deriving the expression for the Newtoninan
force with respect to time. Lunar laser ranging bounds place precise bounds on this effect to
the level of Ġ/G < 10−3/Gy [290]. The magnitude of energy density variation induced by a
disformal coupling can be estimated as ρ̇ ≈ −(φ̈+V ′)φ̇. Assuming φ̇2 ∼ V ∼ ρ0 as discussed
above, Bρ0 & 1 and the solution (6.64), typical mass variation rates Ṁ/M are as small as
∼ 10−6/Gy for the interstellar medium and ∼ 10−29/Gy for the average Earth density, well
beyond the sensitivity of Lunar laser ranging.

Potential Signatures

New local, astrophysical and cosmological signatures may be found by relaxing the approxi-
mations (6.62) assumed in the previous analysis. Some situations where the coupling might
become observable include:

• Matter velocity flows: The spatial component of the matter four-velocity T 0i mixes
the time and space derivatives of the field, as non-zero velocities introduce terms propo-
rional to φ;0i, φ̇ φ,i, which may source the field evolution. These effects are suppressed
by a relativistic v/c factor, but they may be important in certain systems such as binary
pulsars.

• Pressure: Applications of the disformal coupling in the context of Dark Energy ar-
guably require a value Bρ0 � 1, where ρ0 is the average cosmic density. Then, even
though the pressure is usually negligible with respect to the energy density, it should
be easy to find systems for which Bp is also much larger than one. This might have im-
portant consequences for the stability of the theory, as was briefly discussed in Section
6.5.1.

• Radiation: Unlike in the conformal case, the disformal coupling has non-trivial effects
on ultra-relativistic fields for which T ≈ 0, cf. (6.33). Some authors have initiated the
study of the disformal coupling in scenarios featuring radiation. Brax et al. [291] con-
sidered high-precision, low-energy photon experiments, which might be able to detect
the influence of a disformal coupling on top of a conformal one. The distortions in the
baryon-photon chemical potential induced by a disformal coupling and their signatures
on the CMB small scale spectrum have been studied by van de Bruck and Sculthorpe
[292]. Other effects may follow if Electromagnetism is formulated in terms of the barred
metric, such as varying speed of light or modified gravitational light deflection.

• Strong gravitational fields: The connection coefficient Γµ00φ,µ in the field derivative
term is not suppressed by Bρ. It represents the effects of gravity, and was neglected
because it is small in most Solar System applications, since Γr00 = GM

r3
(r−2GM) in the

Schwarzschild metric. However, this term might become relevant in strong gravitational
fields, such as the vicinity of black holes or compact objects.
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• Spatial Field Gradients: In the Bρ� 1, ρ� p limit, the equation for the scalar field
(6.63) becomes independent of the matter content and the field derivatives. Therefore,
if the field acquires a spatial modulation before reaching this limit, it will be preserved
by the subsequent evolution. Spatial gradients of the field formed when the linear
perturbation theory is valid would then be present today, with their actual value de-
pending on the details of the transition between the perturbative (e.g. the small scale
limit considered in Section 6.4.1) and the screened regimes. Gradients of cosmologi-
cal origin might seem as preferred direction effects pointing towards cosmic structures
when analyzed in the Solar System.

Spatial derivatives of the field may also be important if the field is rolling sufficiently
slow as to overcome the p/ρ factor in (6.62).

These and other settings might lead to characteristic signatures and new bounds for disfor-
mally coupled theories, which will be investigated in the future. It should be also possible
to obtain the coefficients of the Parameterized Post Newtonian approximation, which would
allow a more systematic comparison to local gravity tests.

6.6 Discussion

The disformal relation provides a generalization of the conformal transformation. It has
been used to construct theories of modified gravity, notably those which produce non-trivial
effects on null geodesics, such as varying speed of light and gravitational alternatives to Dark
Matter. It also appears in the description of branes embedded in a higher dimensional bulk
space, in which the scalar fields represent the brane position in a certain set of coordinates.
The results of the present Chapter concern the subset of theories which can be expressed
as General Relativity plus a matter Lagrangian, which is constructed using the disformal
metric. This provides a generalization of the old-school scalar tensor theories in the Einstein
frame: Test particles follow geodesics which explicitly involve derivatives of the scalar field,
and the energy momentum of the field and coupled matter (computed w.r.t. the gravitational
metric) is not conserved separately.

It is possible to restore the theory to a Jordan frame representation by reversing the
disformal transformation, as was argued in Section 6.2.1 and computed first in Ref. [68]. The
computation of the Einsten-Hilbert action for a disformal metric produces a theory in which
the field has a non-minimal derivative coupling to the Ricci scalar and in which new, higher
derivative terms appear. The resulting Lagrangian density has the correct Horndeski form
(1.28), and the theory is therefore described by second order equations of motion and stable
in light of Ostrogradski’s Theorem. The existence of additional frames, in which only the
conformal or disformal part enter the matter action explicitly, provides new tools to analyze
this type of theories and further connections between different models (e.g. a disformal theory
in the Jordan frame reduces to a 4th Galileon Lagrangian in the non-relativistic limit). The
terms arising from the inverse disformal transformation contain higher derivatives, endowing
the theory with the Vainshtein screening in the conformal and Jordan frames, which allows
the field to cause effects on cosmological scales while remaining undetectable in the Solar
System.

The equivalence between certain higher derivative theories with conformal or minimal
coupling and disformally coupled theories with an Einstein-Hilbert gravitational sector pro-
vides new means to analyze this type of models. Although the equations for disformally
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coupled theories are rather involved, they are much simpler than higher derivative Horndeski
theories in the Jordan frame. Hence the analysis of disformal theories in the Einstein frame
can be regarded as equivalent to (at least) some scalar-tensor theories featuring the Vain-
shtein screening mechanism. The kinetic mixing between the coupled degrees of freedom
makes it necessary to solve for the higher time derivatives of the different components. Al-
though this generally requires some assumptions, e.g. about the metric, a general equation
without derivatives of the energy-momentum tensor can be obtained (6.36). Once solutions
are computed, it is possible to restore to the Jordan metric in order to interpret the results
and compare to observations.

In high density environments (as measured by the condition Bρ � 1) the field does
not feel the pressence of disformally coupled, non-relativistic matter. This provides a novel
disformal screening mechanism, which is distinct from screening mechanisms based on the
field potential (Chameleon and Symmetron). Our mechanism relies on the existence of a
well defined limit ρ → ∞ in the scalar field equation, given by equation (6.63), for which
the field evolution is independent of the matter distribution and the field gradients, up to
effects of order ∼ p/ρ, v/c. If the conformal part A is negligible, only a friction term remains
and the field coupling density (6.34) is a decreasing function of time. As it evolves below
its cosmological value (provided V ′ < 0 and B′/B > 0), the effects of the coupling are
suppressed by a factor ∼ ρ0/ρ and the theory is consistent with precision gravity tests.
Potentially detectable signatures may be obtained in the presence of matter velocity flows,
radiation or pressure, strong gravitational fields or gradients of cosmological origin.

The disformal screening mechanism may be related to the Vainhstein effect [84], which
suppresses the gradients of the scalar field and hides the additional force near massive sources
due to the higher order derivative self-interactions. In the disformal case, the screening relies
on the kinetic mixing between the scalar field and the coupled degrees of freedom. This
ultimately allow the existence of a well defined ρ→∞ limit in which the field is free, or only
subject to friction(up to conformal interactions). Hence the disformal mechanism belongs to
the kinetic screening category. Moreover, the two cases might indeed be the same physical
effect expressed in different frames, due to the equivalence between the disformally coupled
theories and a particular higher derivative sector of the Horndeski Lagrangian.

The disformal coupling offers interesting possibilities to build models for cosmic accel-
eration. In the FRW approximation, the same properties that gave rise to the disformal
screening mechanism make the background coupling approximately proportional to the dark
energy density (6.48) rather than to the coupled matter energy density. This provides a
concrete realization of a class of interacting dark matter models which have been extensively
studied using phenomenological parameterizations. The equations for linear perturbations
around FRW contain scale dependent terms. These are absent in the pure conformally cou-
pled case, and have hence the potential to distinguish the two possibilities. An analytic
equation for the coupled matter perturbations was derived in the small scale limit. On top of
an additional friction term, the effect of the fifth force can be encapsulated in the definition of
an effective gravitational constant (6.59) which depends on the background coupling factor.

In order to investigate the cosmological implications of a disformal coupling in a simple
setting, a Disformally Coupled Dark Matter (DCDM) example model was proposed. This
has the advantage of avoiding the subtleties of the Einstein frame description, since grav-
ity, baryons and photons share the same physical metric. Additionally, the model has the
advantage of being compatible with local gravitational phenomena without invoking the dis-
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formal screening mechanism. A DCDM model with exponential functions and no conformal
coupling (6.49) provides a dark energy model that tracks the dominant energy component at
early times. When the coupling to Dark Matter becomes active, the scalar field enters a slow
roll phase in order to dynamically avoid a singularity of the disformal metric. The free pa-
rameters can be constrained by observations, and the model is successful at the background
level. When perturbations are included, the DCDM model introduces a series of new effects.
The effective gravitational constant for this model is too large, due to the persistence of the
coupling at late times and the domination of the energy budget by the scalar field. This
causes a too large enhancement of the growth factor, which affects the normalization of the
DM and baryon power spectra, producing a very large ISW effect. Scale dependent effects
are reflected on matter oscillatory features on very large scales and a scale dependent bias
between the coupled dark matter and (uncoupled) baryonic component.

There is considerable freedom in the model to produce cosmologically viable scenarios.
Models of the DCDM type with less dramatic growth of perturbations can be constructed
by modifying the functional dependence of the disformal coupling (e.g. tuning it to become
negligible after the transition to slow roll), the scalar field Lagrangian (e.g. constructing
it with a disformal metric), or perhaps by the interplay between the conformal and the
disformal parts of the coupling. Variations or extensions of DCDM may postulate or include
disformally coupled neutrinos.

Another phenomenological direction is to consider the disformal screening mechanism
in detail. The results presented here considered a purely disformal coupling, monotonically
increasing with the field. Certainly, including a conformal coupling and more general func-
tional forms is of interest. These considerations might help to avoid the instability caused
by the Einstein frame pressure if Bp > 1, as it was discussed in Section 6.5.1. Once different
set-ups are formulated, it is worth to explore the observable signatures for the model by
quantifying the effects outlined at the end of Section 6.5.2.

The dependence of the free functions in the Horndeski Lagrangian (1.28) on the field
kinetic term X has a very special role, as it relates the coupling to gravity to the coefficients
of the second derivative field terms. Therefore, it would be worth considering the transfor-
mations between frames in the more general case in which the disformal relations are allowed
to depend on X. The computation of the Ricci scalar associated to this general disformal
metric would provide the Jordan frame representation of the most general scalar-tensor the-
ory that accepts an Einstein frame description. Since the equations simplify considerably in
this frame, the phenomenology of these theories would be relatively easy to address.

Finally, the existence of a well behaved ρ → ∞ classical limit in the field equation
suggests that disformally coupled theories might introduce new interesting features for the
physics of gravitational singularities and other high energy regimes. The implications of
kinetic mixing for the formation of black holes or the origin of the universe is beyond the
scope of the present work, but it might provide a fruitful exploration to pursue in the future.
This discussion provided just a glimpse to the potential applications of the disformal relation.
As a generalization of the conformal case, which was very central to the gravitation and
cosmology of the 20th Century, the use of disformal transformation might provide novel ways
to address the physics of the 21th Century.
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Conclusions and Outlook

People don’t want their lives fixed. Nobody
wants their problems solved. Their dramas.
Their distractions. Their stories resolved.
Their messes cleaned up. Because what would
they have left? Just the big scary unknown.

Chuck Palahniuk1

T
he present Thesis analyzes several alternatives to the Standard Cosmolog-
ical Model that attempt to explain the observed cosmic acceleration. The
predictions of these scenarios have been compared with current data, in
order to determine which mechanism is empirically favored. The simplest
explanation is a Cosmological Constant. Although phenomenologically suc-
cessful, it is nonetheless unsatisfying according to theoretical estimates and

there are good reasons to go beyond, even in the absence of discrepant observations. The al-
ternatives considered either drop the assumption of homogeneity on large scales or introduce
modifications in the Einstein-Hilbert action. Theories that generalize the gravitational sec-
tor introduce new degrees of freedom, either effective or fundamental. They can be roughly
classified as Modified Gravity or Dark Energy, depending on whether their effects on stan-
dard matter are direct or indirect. It is also possible to consider purely phenomenological
modifications of the underlying equations. Each of these possibilities has been explored in
the previous Chapters.

The cheapest option in terms of new physics turns out to be the most difficult to rec-
oncile with observations. Adiabatic inhomogeneous cosmologies without Dark Energy, which
can be interpreted as the gravitational growth of a spherically symmetric perturbation with
an initially small amplitude, are actually ruled out by current data on geometric observables.
LTB models with a CGBH matter profile are unable to simultaneously fit Supernovae and
Baryon Acoustic Oscillation (BAO) scale observations. In these models, the apparent accel-
eration is caused by the relatively lower deceleration near the location of our galaxy (lower

1Survivor (1999)
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density region), compared to the asymptotic value (higher density region). If the density
contrast is enough to produce the fictitious acceleration demanded by SNe observations, the
lower deceleration near the center produces an additional stretching of the low redshift BAO
scale with respect to the asymptotic value, which is incompatible with current, higher red-
shift data. Due to the generality of the effect, it is expected that a similar tension would be
found regardless of the matter profile. This discrepancy provides further evidence against
inhomogeneous cosmological models with adiabatic initial conditions, e.g. on top of bounds
from the kSZ effect and the expansion rate measured at different redshifts.

The inhomogeneous growth of free falling scales such as the BAO correlation length
can be used to test inhomogeneity within more general models. It is possible to use inho-
mogeneous models of the LTB type with a Cosmological Constant (or other form of Dark
Energy) to quantify the level of inhomogeneity allowed by observations. More generally, one
can further drop assumptions and consider inhomogeneity in other degrees of freedom (age
of the universe, baryon-dark matter or baryon-photon ratios), non-central locations or even
less symmetric space-times. The general program to test large scale homogeneity and the
Copernican Principle requires extending the set of observables and analyzing them with-
out introducing spurious assumptions. The volume-averaged BAO scale discrepancy may be
rendered concordant with SNe by the inclusion of Dark Energy or inhomogeneous baryon
fraction. However, new data able to separate the radial and angular distances (e.g. the
Alcock-Paczynski effect) can potentially break the degeneracy. This program would natu-
rally profit from the inclusion of dynamical observables, such as Redshift Space Distortions
and the Integrated Sachs-Wolfe effect.

The model based approach has a number of advantages with respect to phenomeno-
logical descriptions of modified theories. It allows one to give a self consistent description
which is well connected to the underlying ideas. Additionally, it can be used to extract
predictions in different situations, although the possibilities are usually limited by technical
or computational difficulties. On the other hand, phenomenological models often require a
number of assumptions in order to obtain the background or perturbation equations, as it
was the case of the entropic (modified) gravity scenarios. Parameterizations also allow to
explore the inter-dependence of the assumptions (e.g. the preference towards slightly closed
spatial sections by the Dark Energy model based on a Generalized Entropy-area Law). Con-
crete models are complementary to phenomenological parameterizations. The former allow
to study the link between observational signatures and the underlying physical mechanisms,
and provide valuable inspiration for the latter.

Disformal relations tend new bridges between different scalar-tensor theories of gravity.
The inclusion of a scalar field generously extends the theory space from the Einstein-Hilbert
to the Horndeski Lagrangian, which allows four free functions of the field and its kinetic
term. The disformal transformation applied to a canonical scalar field Lagrangian minimally
coupled to gravity recovers a variety of Dark Energy models, that belong to the simplest of
Horndeski’s functions (k-essence). More generally, the disformal prescription applied to the
matter sector introduces a new scalar force. If the gravitational sector is standard, these
disformally coupled theories are the Einstein Frame representation of a theory in which the
field couples to the curvature tensors through its derivatives, together with second order
(but safe) derivative terms. This Jordan Frame representation, obtained by undoing the
disformal transformation, corresponds to a particular form of the function in the Horndeski
Lagrangian which corresponds to the generalized fourth order Galileon term. These theories
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have attracted considerable attention because they are endowed with the Vainshtein screening
mechanism, which hides the force mediated by the field near massive bodies.

Theories based on a disformal coupling to matter come naturally equipped with a disfor-
mal screening mechanism, that renders them viable in the Solar System. The kinetic mixing
with the disformally coupled degrees of freedom makes the scalar field equation independent
of the matter distribution and the field spatial derivatives in high density, non-relativistic
environments. Then the field rolls homogeneously and does not develop gradients between
massive bodies, hiding the scalar force. If the field is set up for cosmological applications, the
effects of the field are suppressed by the ratio between the local and cosmic average energy
density. Based on the correspondence between disformally coupled theories and generalized
Galileons, the disformal screening mechanism may be just the Vainshtein effect in disguise.
The duality between the higher derivative Jordan Frame and the disformally coupled Ein-
stein Frame descriptions would facilitate the exploration of certain sectors in the Horndeski
Lagrangian. Just as in old school scalar-tensor theories, the Einstein Frame description
considerably simplifies the equations and is hence useful for computational purposes.

Disformal relations also allow the construction of models for cosmic acceleration. These
rely on their dynamical resistance to produce singularities in the disformal metric, which
drives the scalar field into a slow roll phase. This property was explored explicitly in two
cases that avoid the subtleties of working in the Einstein Frame. Disformal quintessence
provides a Dark Energy model compatible with current observations, as it converges to a
Cosmological Constant if the potentials are very steep, making it very difficult to distinguish
from the Standard Cosmological Model. The Disformally Coupled Dark Energy models in-
troduce more dramatic departures due to the direct effect on Dark Matter. The simple model
considered is viable a at the background level. However, the evolution of linear perturbations
is incompatible with observations, due to the strong effects on the matter power spectrum
and the large Integrated Sachs-Wolfe. Fortunately, viable models may be constructed by
exploring the freedom in the field Lagrangian and the coupling functions. These alternatives
might be distinguishable from other modifications of gravity and coupled Dark Matter mod-
els by the additional bias between DM and baryons, as well as for the scale dependence of
the perturbations growth, which is different from conformally coupled models.

It is necessary for the health of science to bear in mind alternative models. Regardless
of its success, due respect to the Standard Cosmological Model requires the right dose of
skepticism. On the observational side, it helps to identify and avoid (or at least control)
the inclusion of model dependent assumptions in the analysis of the data. Studying the
phenomenological implications of alternative models and comparing them to observations
also allows one to explicitly probe the underlying assumptions behind the standard paradigm,
as well as to quantify the allowed departures. This is important, as empirical science relies
on disproving alternatives rather than confirming hypotheses. Considerable knowledge can
be gained from the theoretical point of view, as the study of alternatives helps to understand
and clarify the properties of the standard paradigm. These considerations will become even
more important for the next generation of cosmological surveys, as they will either validate
the foundations of the Standard Cosmological model to higher accuracy, or open Pandora’s
box again by bringing new surprises.
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Appendix A

MCMC Analysis

When confronting cosmological models with observations, the objective is to determine which
values of the free parameters (our theory) are compatible with an available set of astronomical
data (our Universe). Since measurements are not infinitely precise, the compatible set of
parameters will occupy at least a finite volume in the parameter space, which is initially
unknown. What is known is the probability of obtaining a certain measurement for a given
model, which can be obtained by comparing the theoretical prediction with the experimental
value and its uncertainty (e.g. assuming Gaussian errors). This probability L(D|u) is known
as the likelihood of observing the data D (a vector in the space of observations) given a
model u (a vector in the space of parameters). It has to be inverted in order to obtain the
posterior distribution P (u|D), i.e. the probability of u being the true model if D is observed.
Both probabilities are related through Bayes theorem:

P (u|D) =
L(D|u)π(u)∫
L(D|u′)π(u′)du′

(A.1)

Monte Carlo Markov Chain analysis constitute a widely used strategy to invert the
likelihood and obtain the posterior distribution. A direct grid sampling of the parameter
space requires a great deal of computational effort, since the number of points scales with
exponentially with the number of parameters. On the other hand, MCMC execution times
increase roughly linearly with the number of parameters. A Markov Chain is a stochastic
sampling of the parameter space {u0, ..., un} in which the point ui only depends on ui−1. If
the way in which the chain is created is chosen properly, the distribution of its points will
converge to the posterior distribution

Dist{u0, ..., un} = P (u|D) (A.2)

The sampling method used by CMBEasy is the Metropolis algorithm [293]. For a given
point ui, the next point is chosen as follow:

1. Compute L(D|ui); the likelihood of observing D given the parameters ui.

2. Propose a new parameter vector by sampling from a proposal distribution q(ui, ui+1)
(see below).

3. Compute the likelihood for the proposed parameter L(D|ui+1).
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4. If the likelihood is higher Li+1 > Li, the point is added to the chain and the procedure
goes to step 2.

5. If Li+1 < Li, a random variable u ∈ [0, 1] is generated. If u < Li+1/Li, the step is
taken and go to 2. Otherwise go to 2, but reject the actual point ui+1.

The algorithm assumes flat priors π(u) and a symmetric proposal distribution q(ui, ui+1).
Likelihoods outside the boundaries are assigned zero likelihood. An adaptive stepsize sampler
helps to the convergence and mixing of the chains. Too large stepsize will lead to many steps
being rejected, while too short stepsize will take a long time to sample the distribution. The
function q(ui, ui+1) is Gaussian, and it is estimated from the previous points in the chains.
Stepsizes are taking along the principal axes of this distribution to take into account the
possible degeneracies among the parameters.

The initial point in the chain is chosen randomly in the parameter space and will move
to regions of higher likelihood afterwards. Therefore, the first points in every chain do not
reflect the distribution of P (u|D). In order to test the convergence and determine how many
points to ignore, the algorithm uses a number m of chains to evaluate their mixing and
convergence. CMBeasy uses the test of Gelman and Rubin [217] to calculate the variance of
each parameter between chains. We denote by ψij the value of one parameter at the point
j = 1, ..n of chain i, and a bar over a quantity means average over the missing indices. The
variance between chains B and within chains W are given by [218]

B =
n

m− 1

m∑
i=1

(ψ̄i − ψ̄)2 , (A.3)

W =
1

m(n− 1)

m∑
i=1

n∑
j=1

(ψij − ψ̄i) , (A.4)

where the sums over the point index j are taken over the last n points instead of the whole
chain. The quantity

R =
n−1
n W + 1

nB

W
(A.5)

should converge to one for the stationary distribution. If, for each parameter R < 1.2, the
chain can be safely considered to be sampling from the posterior distribution.
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CMBEasy

CMBEasy [216] is an open source program for the computation of cosmological observables
based on CMBFAST [118]. It is written in C++, and its object oriented source code allows
very clean modifications of the code by simply re-implementing the desired functions in the
proper subclasses. As in its precursor, most quantities are stored in splines, a very efficient
structure to contain and manipulate functions of a single variable. The actual version can
compute power and CMB spectra within seconds, including tensors and polarization. Two
different gauges (synchronous and Newtonian) and several quintessence models are included.
A typical CMB computation is done as follows:

1. The background and thermal histories are computed.

2. The perturbations are propagated in Fourier space for different k modes.

3. The line of sight integration (2.5) is used to compute the anisotropy spectrum seen
today.

The Analyze This! [218] package provides the necessary functions to observationally con-
straint models. It is based on the analizethis class, containing the routines necessary to
calculate the likelihoods of the computed model for a wide set of available astronomical data,
a program designed to run the MCMCs in a OpenMPI parallel environment. All the com-
putations of cosmological observables contained in this thesis were performed using suitably
modified versions of CMBeasy.
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Equations for Generalized k-essence

The action for the scalar is specified through a Lagrangian density

Sk =

∫
d4x
√
−g L(X,φ) , (C.1)

where X ≡ −1
2g
abφ,aφ,b. With these conventions, canonical quintessence corresponds to

L(X,φ) = X − V (φ). The energy momentum tensor is

T
(φ)
ab =

−2√
−g

δ
√
−gL(X,φ)

δgab
= L(X,φ)gab + L,X(X,φ)φ,aφ,b , (C.2)

where commas denote partial derivatives. The dynamical equation for the scalar field is

L,φ −∇a(L,X∂aφ) = 0 . (C.3)

Background equations: For the flat FRW metric using conformal time ds2 = a2(τ)(−dτ2+
dx̄2) and

ρφ = L,Xφ′2/a2 − L , (C.4)

pφ = L , , (C.5)

where f ′ = f,τ . Expanding the covariant derivative in (C.3) for an FRW metric yields the
field equation

Mφ′′ +H(3L,X −M)φ′ + a2L,φ + L,Xφφ′ 2 = 0 , (C.6)

where M≡ L,X − L,XXφ′2/a2 is useful to define.

Linear perturbations (syncrhonous gauge): ds2 = a2(τ)(−dτ2 + (δij + hij) dx
idxj)

(using Ma & Bertschinger’s notation [274]) the relevant terms for Einstein Equations become

δρφ =Mφ′δφ′/a2 − (L,φ − L,Xφ(φ′/a)2)δφ . (C.7)

δpφ = L,φδφ+ L,Xφ′δφ′/a2 + Lh/3 , (C.8)

(ρ+ p)θφ = −L,X
k2

a2
φ′δφ . (C.9)
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Σi
j = O(δφ2) and h = δijhij . The Equation for the field perturbations is

Mδφ′′ + [2HM+M′] δφ′ + 1
2L,Xh

′φ′

+
[
L,Xk2 + (φ′′ + 2Hφ′)L,Xφ + L′,Xφφ′ + a2L,φφ

]
δφ = 0 . (C.10)

Since the coefficients are background quantities, we can take its derivatives M ′,L′,Xφ through
a spline.
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Disformal Relations

Consider the disformal relation between two metrics, specified by the two scalar functions A,
B, and a vector bµ,

ḡµν = Agµν +Bbµbν . (D.1)

The inverse metric can be found by contraction

ḡµν =
1

A

(
gµν − γ2bµbν

)
. (D.2)

where

γ2 ≡ B

A+Bb2
, (D.3)

and b2 ≡ gµνbµbν ≡ bµbµ. The determinant of the barred and unbarred metrics are related√
ḡ

g
= A

√
AB

γ2
= A2

√
1 +

B

A
b2 , (D.4)

The above relation is derived in Appendix C of Reference [60].
It is possible to write the relation of stress energy momentum tensor (associated to a

Lagrangian
√
−gL) in the two metrics by using the chain rule

Tµν ≡ 2√
−g

δ (
√
−gL)

δgµν
=

√
ḡ

g

δḡαβ
δgµν

(
2√
−ḡ

δ (
√
−gL)

δḡαβ

)
. (D.5)

By identifying the quantity in brackets as T̄µν and using (D.4), the following relation follows

Tµν = A3

√
1 +

B

A
b2 T̄µν . (D.6)

The equivalent relation with lower indices is considerably more involved

Tµν =

√
ḡ

g
D αβ
µν T̄αβ , (D.7)

where

D αβ
µν ≡ δḡαβ

δgµν
=

1

A

(
δαµδ

β
ν − 2γ2bαb(µδ

β
ν) + γ4bµbνb

αbβ
)
. (D.8)
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The inverse relations are provided below for completeness

gµν =
1

A

(
ḡµν −Bb̄µb̄ν

)
, (D.9)

gµν = A
(
ḡµν + γ̄2b̄µb̄ν

)
, γ̄2 ≡ B

A−Bb̄2
, (D.10)

D̄µν
αβ = A

(
δµαδ

ν
β + 2γ̄2δµ(αb̄β)b̄

ν + γ̄4b̄µb̄ν b̄αb̄β

)
, (D.11)

where b̄µ ≡ ḡµνbν . Note that b̄µ = bµ, b̄µ = B/(Aγ̄2)bµ and γ2b2 = Bb̄2.

D.1 Disformal Geodesics

The expression for the disformal connection (6.6) can be expanded in terms of the functions
in the disformal metric

Γ̄µαβ = Γµαβ + δµ(αlogA,β) −
1

2
logA,µgαβ +

1

A

(
φ,µB,(αφ,β) −

1

2
B,µφ,αφ,β

)
(D.12)

−γ
2

A
φ,µ
[
A,(αφ,β) −

1

2
φ,λA,λgαβ − 2X

(
B,αφ,β −

1

2
φ,λB,λφ,αφ,β

)]
+
B

A

[
∇(α

(
φ,β)φ

,µ
)
− 1

2
∇µ (φ,αφ,β)− γ2φ,µφ,λ

(
∇(α

(
φ,β)φ,λ

)
− 1

2
∇λ (φ,αφ,β)

)]
.

Here γ2 ≡ B
A−2BX arises from the inverse barred metric, eq. (D.2). The first term is just

the connection of the unbarred metric, and the two following terms arise from the purely
conformal transformation involving derivatives of A. The fourth term and the second line
contain the first order derivative terms from the disformal contribution to the metric B. The
third line shows the second order derivative terms ∇∇φ.

D.2 General Disformal Coupling Perturbations

The coupling density perturbation that enters the linear equations (6.52,6.53) in the case
where both the conformal and the disformal parts of the coupling are relevant has the rather
complicated form

δQ = Qρδdc +Qφδφ+Qdφδφ̇+QΦΦ +QΨ̇Ψ̇ , (D.13)
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where

Qρ = ρ

(
1− B

A
φ̇2

)
A′(A− 2Bφ̇2) +B′φ̇2 −A(2BV ′ + 6BHφ̇)

2
(
A+Bρ−Bφ̇2

)2 , (D.14)

Qφ =
(

(1− 2
B

A
φ̇2)A′′ +B′′φ̇2 − 2B

(
k2

a2
+ V ′′

)) ρ

2A(A+Bρ−Bφ̇2)

−
((A′

A

)2

(A2 − 2B(2A+Bρ)φ̇2 + 2B2φ̇4) +A′
(
−2B(V ′ + 3Hφ̇) +B′(ρ+ 2φ̇2)

)
+2AB′(V ′ + 3Hφ̇) +A2B′2φ̇2(ρ− φ̇2)

) ρ

2(A+Bρ−Bφ̇2)2
, (D.15)

Qdφ = −
B(A+ 2Bρ)A

′

A φ̇− (A+Bρ)B′φ̇+B
(

2BV ′φ̇+ 3H(A+Bρ+Bφ̇2)
)

(
A+Bρ−Bφ̇2

)2 ρ , (D.16)

QΦ =
B(A+ 2Bρ)A

′

A φ̇− (A+Bρ)B′φ̇+ 2B
(

3H(A+Bρ) +BV ′φ̇
)

(A+Bρ−Bφ̇2)2
ρφ̇ , (D.17)

QΨ̇ =
3Bρφ̇

A+Bρ−Bφ̇2
. (D.18)

D.3 Lagrangian Derivatives for Disformal Quintessence

In this appendix, the necessary derivatives of the Lagrangian density for disformal quintessence
studied in chapter 5 are given

L(φ,X) =
X√

1 + 2B(φ)X
−
√

1 + 2B(φ)XV (φ) . (D.19)

L,X =
1√
L

[
1 +

D
2L

+BV

]
(D.20)

L,XX φ̇2 = − D
L3/2

[
2 +

3D
2L

+BV

]
(D.21)

L,Xφ = − 1√
L

[
D,φ
L

(
1 +

3D
4L

+
1

2
BV

)
+B,φV +BV,φ

]
(D.22)

L,φ = − 1√
L

[
D,φ
2

(
X

L
+ V

)
− LV,φ

]
(D.23)

L,φφ = − 1√
L

[(D,φ)2

4L

(
−3X

L
− V

)
−D,φV,φ +

D,φφ
2

(
−X
L
− V

)
+ LV,φφ

]
(D.24)
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